ترغب بنشر مسار تعليمي؟ اضغط هنا

The CUORE and CUORE-0 experiments at LNGS

101   0   0.0 ( 0 )
 نشر من قبل Antonio D'Addabbo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cryogenic Underground Observatory for Rare Events (CUORE) is a 1-ton scale bolometric experiment devoted to the search of the neutrinoless double-beta decay (0{ u}b{eta}b{eta}) in 130Te. The CUORE detector consists of an array of 988 TeO2 crystals operated at 10 mK. CUORE-0 is the CUORE demonstrator: it has been built to test the performance of the upcoming CUORE experiment and represents the largest 130Te bolometric setup ever operated. CUORE-0 has been running at Laboratori Nazionali del Gran Sasso (Italy) from 2013 to 2015. The final CUORE-0 analysis on 0{ u}b{eta}b{eta} and the corresponding detector performance are presented. The present status of the CUORE experiment, now in its final construction and commissioning phase, are discussed. The results from assembly of the detector and the commissioning of the cryostat are reported.



قيم البحث

اقرأ أيضاً

The Cryogenic Underground Observatory for Rare Events (CUORE) is an experiment to search for neutrinoless double beta decay ($0 ubetabeta$) in $^{130}$Te and other rare processes. CUORE is a cryogenic detector composed of 988 TeO$_2$ bolometers for a total mass of about 741 kg. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/(keV$cdot$kg$cdot$y) will be reached, in five years of data taking CUORE will have an half life sensitivity around $1times 10^{26}$ y at 90% C.L. As a first step towards CUORE a smaller experiment CUORE-0, constructed to test and demonstrate the performances expected for CUORE, has been assembled and is running. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.
CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target backgrou nd of 0.01 counts/keV/kg/y will be reached, in five years of data taking CUORE will have a 1 sigma half life sensitivity of 10E26 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.
With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, the CUORE (Cryogenic Underground Observatory for Rare Events) experiment aims at searching for neutrinoless double beta decay of 130Te with unp recedented sensitivity. Expected to start data taking in 2015, CUORE is currently in an advanced construction phase at LNGS. CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6E26 y at 1 sigma (9.5E25 y at the 90% confidence level), in five years of live time, corresponding to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). Further background rejection with auxiliary bolometric detectors could improve CUORE sensitivity and competitiveness of bolometric detectors towards a full analysis of the inverted neutrino mass hierarchy. CUORE-0 was built to test and demonstrate the performance of the upcoming CUORE experiment. It consists of a single CUORE tower (52 TeO2 bolometers of 750 g each, arranged in a 13 floor structure) constructed strictly following CUORE recipes both for materials and assembly procedures. An experiment its own, CUORE-0 is expected to reach a sensitivity to the neutrinoless double beta decay half-life of 130Te around 3E24 y in one year of live time. We present an update of the data, corresponding to an exposure of 18.1 kg y. An analysis of the background indicates that the CUORE performance goal is satisfied while the sensitivity goal is within reach.
130 - Davide Chiesa 2017
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay that has been able to reach the 1-ton scale. The detector consists of an array of 988 TeO2 crystals arranged in a cylindrical compact structure of 19 towers. The construction of the experiment and, in particular, the installation of all towers in the cryostat was completed in August 2016, followed by the cooldown to base temperature at the beginning of 2017. The CUORE detector is now operational and has been taking science data since Spring 2017. We present here the initial performance of the detector and the preliminary results from the first detector run.
We collected 19.4 days of data from four 750 g TeO2 bolometers, and in three of them we were able to set the energy threshold around 3 keV using a new analysis technique. We found a background rate ranging from 25 cpd/keV/kg at 3 keV to 2 cpd/keV/kg at 25 keV, and a peak at 4.7 keV. The origin of this peak is presently unknown, but its presence is confirmed by a reanalysis of 62.7 kg.days of data from the finished CUORICINO experiment. Finally, we report the expected sensitivities of the CUORE0 (52 bolometers) and CUORE (988 bolometers) experiments to a WIMP annual modulation signal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا