ﻻ يوجد ملخص باللغة العربية
We endow the group of automorphisms of an exact Courant algebroid over a compact manifold with an infinite dimensional Lie group structure modelled on the inverse limit of Hilbert spaces (ILH). We prove a slice theorem for the action of this Lie group on the space of generalized metrics. As an application, we show that the moduli space of generalized metrics is stratified by ILH submanifolds and relate it to the moduli space of usual metrics. Finally, we extend these results to odd exact Courant algebroids.
In this paper, we deal with harmonic metrics with respect to generalized Kantowski-Sachs type spacetime metrics. We also consider the Sasaki, horizontal and complete lifts of generalized Kantowski-Sachs type spacetime metrics to tangent bundle and study their harmonicity.
We present a systematic study of symmetries, invariants and moduli spaces of classes of coframes. We introduce a classifying Lie algebroid to give a complete description of the solution to Cartans realization problem that applies to both the local and the glob
The solution of the Calabi Conjecture by Yau implies that every Kahler Calabi-Yau manifold $X$ admits a metric with holonomy contained in $operatorname{SU}(n)$, and that these metrics are parametrized by the positive cone in $H^2(X,mathbb{R})$. In th
We consider geometries on the space of Riemannian metrics conformally equivalent to the widely studied Ebin L^2 metric. Among these we characterize a distinguished metric that can be regarded as a generalization of Calabis metric on the space of Kahl
Given a G-structure with connection satisfying a regularity assumption we associate to it a classifying Lie algebroid. This algebroid contains all the information about the equivalence problem and is an example of a G-structure Lie algebroid. We disc