ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy Spectrum of Fast Second Order Fermi Accelerators as Sources of Ultra-High-Energy Cosmic Rays

119   0   0.0 ( 0 )
 نشر من قبل Tobias Winchen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic acceleration of cosmic rays in second order Fermi processes is usually considered too slow to reach ultra-high energies, except in specific cases. In this paper we present the energy spectrum obtained from second order Fermi acceleration in highly turbulent magnetic fields as e.g. found in the outskirts of AGN jets in situations where it can be sufficiently fast to accelerate particles to the highest observed energies. We parametrize the resulting non-power-law spectra and show that these can describe the cosmic ray energy spectrum and mass-composition data at the highest energies if propagation effects are taken into account.

قيم البحث

اقرأ أيضاً

155 - M.T. Dova 2016
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written versi on of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present an introduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.
We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space -- unless the baryonic loading is much larger than previously anticipated.
The origin of ultra-high energy cosmic rays (UHECRs) is still unknown. It has recently been proposed that UHECR anisotropies can be attributed to starburst galaxies or active galactic nuclei. We suggest that the latter is more likely and that giant-l obed radio galaxies such as Centaurus A and Fornax A can explain the data.
99 - Daniel Kuempel 2014
More than 100 years after the discovery of cosmic rays and various experimental efforts, the origin of ultra-high energy cosmic rays (E > 100 PeV) remains unclear. The understanding of production and propagation effects of these highest energetic par ticles in the universe is one of the most intense research fields of high-energy astrophysics. With the advent of advanced simulation engines developed during the last couple of years, and the increase of experimental data, we are now in a unique position to model source and propagation parameters in an unprecedented precision and compare it to measured data from large scale observatories. In this paper we revisit the most important propagation effects of cosmic rays through photon backgrounds and magnetic fields and introduce recent developments of propagation codes. Finally, by comparing the results to experimental data, possible implications on astrophysical parameters are given.
We measure the correlation between sky coordinates of the Swift BAT catalogue of active galactic nuclei with the arrival directions of the highest energy cosmic rays detected by the Auger Observatory. The statistically complete, hard X-ray catalogue helps to distinguish between AGN and other source candidates that follow the distribution of local large-scale structure. The positions of the full catalogue are marginally uncorrelated with the cosmic ray arrival directions, but when weighted by their hard X-ray flux, AGN within 100 Mpc are correlated at a significance level of 98 per cent. This correlation sharply decreases for sources beyond ~100 Mpc, suggestive of a GZK suppression. We discuss the implications for determining the mechanism that accelerates particles to these extreme energies in excess of 10^19 eV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا