ترغب بنشر مسار تعليمي؟ اضغط هنا

Unidirectional scattering induced by the toroidal dipole moment in the system of plasmonic nanoparticles

440   0   0.0 ( 0 )
 نشر من قبل Lixin Ge
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unidirectional backward and forward scattering of electromagnetic waves by nanoparticles are usually interpreted as the interference of conventional multipole moments (i.e., electric and magnetic dipole, electric quadrupole, etc.). The role of toroidal dipole moments in unidirectional scattering is generally overlooked. In this work, we investigate the unidirectional scattering for the system of three plasmonic nanospheres. It is found that the unidirectional backward scattering is caused by the interference between the toroidal dipole moment and other conventional multipole moments. Tunable primary backward and forward scattering can be achieved under some specific configurations. Our results can find applications in the design of nanoantennas.

قيم البحث

اقرأ أيضاً

Vacuum fluctuations are a fundamental feature of quantized fields. It is usually assumed that observations connected to vacuum fluctuations require a system well isolated from other influences. In this work, we demonstrate that effects of the quantum vacuum can already occur in simple colloidal nano-assemblies prepared by wet chemistry. We claim that the electromagnetic field fluctuations at the zero-point level saturate the absorption of dye molecules self-assembled at the surface of plasmonic nano-resonators. For this effect to occur, reaching the strong coupling regime between the plasmons and excitons is not required. This intriguing effect of vacuum-induced saturation (VISA) is discussed within a simple quantum optics picture and demonstrated by comparing the optical spectra of hybrid gold-core dye-shell nanorods to electromagnetic simulations.
In this work, we present a novel technique to directly measure the phase shift of the optical signal scattered by single plasmonic nanoparticles in a diffraction-limited laser focus. We accomplish this by equipping an inverted confocal microscope wit h a Michelson interferometer and scanning single nanoparticles through the focal volume while recording interferograms of the scattered and a reference wave for each pixel. For the experiments, lithographically prepared gold nanorods where used, since their plasmon resonances can be controlled via their aspect ratio. We have developed a theoretical model for image formation in confocal scattering microscopy for nanoparticles considerably smaller than the diffraction limited focus We show that the phase shift observed for particles with different longitudinal particle plasmon resonances can be well explained by the harmonic oscillator model. The direct measurement of the phase shift can further improve the understanding of the elastic scattering of individual gold nanoparticles with respect to their plasmonic properties.
The multiconfiguration Dirac-Hartree-Fock theory (MCDHF) has been employed to calculate the electric dipole moment of the 7s6d 3D2 state of radium induced by the nuclear Schiff moment. The results are dominated by valence and core-valence electron co rrelation effects. We show that the correlation effects can be evaluated in a converged series of multiconfiguration expansions.
With the rise of artificial magnetism and metamaterials, the toroidal family recently attracts more attention for its unique properties. Here we propose an all-dielectric pentamer metamolecule consisting of nano-cylinders with two toroidal dipolar re sonances, whose frequencies, EM distributions and Q factor can be efficiently tuned due to the additional electric dipole mode offered by a central cylinder. To further reveal the underlying coupling effects and formation mechanism of toroidal responses, the multiple scattering theory is adopted. It is found that the first toroidal dipole mode, which can be tuned from 2.21 to 3.55 $mu$m, is mainly induced by a collective electric dipolar resonance, while the second one, which can be tuned from 1.53 to 1.84 $mu$m, relies on the cross coupling of both electric and magnetic dipolar responses. The proposed low-loss metamolecule and modes coupling analyses may pave the way for active design of toroidal responses in advanced optical devices.
The gain-assisted plasmonic analogue of electromagnetically induced transparency (EIT) in a metallic metamaterial is investigated for the purpose to enhance the sensing performance of the EIT-like plasmonic structure. The structure is composed of thr ee bars in one unit, two of which are parallel to each other (dark quadrupolar element) but perpendicular to the third bar (bright dipolar element), The results show that, in addition to the high sensitivity to the refractive-index fluctuation of the surrounding medium, the figure of merit for such active EIT-like metamaterials can be greatly enhanced, which is attributed to the amplified narrow transparency peak.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا