ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of topological insulator state in the semimetal LaBi

255   0   0.0 ( 0 )
 نشر من قبل Rui Lou
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By employing angle-resolved photoemission spectroscopy combined with first-principles calculations, we performed a systematic investigation on the electronic structure of LaBi, which exhibits extremely large magnetoresistance (XMR), and is theoretically predicted to possess band anticrossing with nontrivial topological properties. Here, the observations of the Fermi-surface topology and band dispersions are similar to previous studies on LaSb [Phys. Rev. Lett. 117, 127204 (2016)], a topologically trivial XMR semimetal, except the existence of a band inversion along the $Gamma$-$X$ direction, with one massless and one gapped Dirac-like surface state at the $X$ and $Gamma$ points, respectively. The odd number of massless Dirac cones suggests that LaBi is analogous to the time-reversal $Z_2$ nontrivial topological insulator. These findings open up a new series for exploring novel topological states and investigating their evolution from the perspective of topological phase transition within the family of rare-earth monopnictides.

قيم البحث

اقرأ أيضاً

86 - Jin Hu , Yanglin Zhu , David Graf 2017
The layered WHM - type (W=Zr/Hf/La, H=Si/Ge/Sn/Sb, M=S/Se/Te) materials represent a large family of topological semimetals, which provides an excellent platform to study the evolution of topological semimetal state with the fine tuning of spin-orbit coupling and structural dimensionality for various combinations of W, H and M elements. In this work, through high field de Haas-van Alphen (dHvA) quantum oscillation studies, we have found evidence for the predicted topological non-trivial bands in ZrSnTe. Furthermore, from the angular dependence of quantum oscillation frequency, we have revealed the three-dimensional Fermi surface topologies of this layered material owing to strong interlayer coupling.
293 - Q. Wan , T. Y. Yang , S. Li 2021
Using spin-resolved and angle-resolved photoemission spectroscopy and first-principles calculations, we have identified bulk band inversion and spin polarized surface state evolved from a weak topological insulator (TI) phase in van der Waals materia ls Nb3XTe6 (X = Si, Ge). The fingerprints of weak TI homologically emerge with hourglass fermions, as multi nodal chains composed by the same pair of valence and conduction bands gapped by spin orbit coupling. The novel topological state, with a pair of valence and conduction bands encoding both weak TI and hourglass semimetal nature, is essential and guaranteed by nonsymmorphic symmetry. It is distinct from TIs studied previously based on band
128 - Y. S. Hou , , R. Q. Wu 2018
We propose to use ferromagnetic insulator MnBi2Se4/Bi2Se3/antiferromagnetic insulator Mn2Bi2Se5 heterostructures for the realization of the axion insulator state. Importantly, the axion insulator state in such heterostructures only depends on the mag netization of the ferromagnetic insulator and hence can be observed in a wide range of external magnetic field. Using density functional calculations and model Hamiltonian simulations, we find that the top and bottom surfaces have opposite half-quantum Hall conductance, with a sizable global spin gap of 5.1 meV opened for the topological surface states of Bi2Se3. Our work provides a new strategy for the search of axion insulators by using van der Waals antiferromagnetic insulators along with three-dimensional topological insulators.
Topological quantum materials, including topological insulators and superconductors, Dirac semimetals and Weyl semimetals, have attracted much attention recently for their unique electronic structure, spin texture and physical properties. Very lately , a new type of Weyl semimetals has been proposed where the Weyl Fermions emerge at the boundary between electron and hole pockets in a new phase of matter, which is distinct from the standard type I Weyl semimetals with a point-like Fermi surface. The Weyl cone in this type II semimetals is strongly tilted and the related Fermi surface undergos a Lifshitz transition, giving rise to a new kind of chiral anomaly and other new physics. MoTe2 is proposed to be a candidate of a type II Weyl semimetal; the sensitivity of its topological state to lattice constants and correlation also makes it an ideal platform to explore possible topological phase transitions. By performing laser-based angle-resolved photoemission (ARPES) measurements with unprecedentedly high resolution, we have uncovered electronic evidence of type II semimetal state in MoTe2. We have established a full picture of the bulk electronic states and surface state for MoTe2 that are consistent with the band structure calculations. A single branch of surface state is identified that connects bulk hole pockets and bulk electron pockets. Detailed temperature-dependent ARPES measurements show high intensity spot-like features that is ~40 meV above the Fermi level and is close to the momentum space consistent with the theoretical expectation of the type II Weyl points. Our results constitute electronic evidence on the nature of the Weyl semimetal state that favors the presence of two sets of type II Weyl points in MoTe2.
Chiral fermions in solid state feature Fermi arc states, connecting the surface projections of the bulk chiral nodes. The surface Fermi arc is a signature of nontrivial bulk topology. Unconventional chiral fermions with an extensive Fermi arc travers ing the whole Brillouin zone have been theoretically proposed in CoSi. Here, we use scanning tunneling microscopy / spectroscopy to investigate quasiparticle interference at various terminations of a CoSi single crystal. The observed surface states exhibit chiral fermion-originated characteristics. These reside on (001) and (011) but not (111) surfaces with pi-rotation symmetry, spiral with energy, and disperse in a wide energy range from ~-200 to ~+400 mV. Owing to the high-energy and high-space resolution, a spin-orbit coupling-induced splitting of up to ~80 mV is identified. Our observations are corroborated by density functional theory and provide strong evidence that CoSi hosts the unconventional chiral fermions and the extensive Fermi arc states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا