ترغب بنشر مسار تعليمي؟ اضغط هنا

The calibration of read-out-streak photometry in the XMM-Newton Optical Monitor and the construction of a bright-source catalogue

58   0   0.0 ( 0 )
 نشر من قبل Mathew James Page
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamic range of the XMM-Newton Optical Monitor (XMM-OM) is limited at the bright end by coincidence loss, the superposition of multiple photons in the individual frames recorded from its micro-channel-plate (MCP) intensified charge-coupled device (CCD) detector. One way to overcome this limitation is to use photons that arrive during the frame transfer of the CCD, forming vertical read-out streaks for bright sources. We calibrate these read-out streaks for photometry of bright sources observed with XMM-OM. The bright source limit for read-out streak photometry is set by the recharge time of the MCPs. For XMM-OM we find that the MCP recharge time is 0.55 ms. We determine that the effective bright limits for read-out streak photometry with XMM-OM are approximately 1.5 magnitudes brighter than the bright source limits for normal aperture photometry in full-frame images. This translates into bright-source limits in Vega magnitudes of UVW2=7.1, UVM2=8.0, UVW1=9.4, U=10.5, B=11.5, V=10.2 and White=12.5 for data taken early in the mission. The limits brighten by up to 0.2 magnitudes, depending on filter, over the course of the mission as the detector ages. The method is demonstrated by deriving UVW1 photometry for the symbiotic nova RR Telescopii, and the new photometry is used to constrain the e-folding time of its decaying UV emission. Using the read-out streak method, we obtain photometry for 50 per cent of the missing UV source measurements in version 2.1 of the XMM-Newton Serendipitous UV Source Survey (XMM-SUSS 2.1) catalogue.

قيم البحث

اقرأ أيضاً

The Optical Monitor Catalogue of serendipitous sources (OMCat) contains entries for every source detected in the publicly available XMM-Newton Optical Monitor (OM) images taken in either the imaging or ``fast modes. Since the OM is coaligned and reco rds data simultaneously with the X-ray telescopes on XMM-Newton, it typically produces images in one or more near-UV/optical bands for every pointing of the observatory. As of the beginning of 2006, the public archive had covered roughly 0.5% of the sky in 2950 fields. The OMCat is not dominated by sources previously undetected at other wavelengths; the bulk of objects have optical counterparts. However, the OMCat can be used to extend optical or X-ray spectral energy distributions for known objects into the ultraviolet, to study at higher angular resolution objects detected with GALEX, or to find high-Galactic-latitude objects of interest for UV spectroscopy.
We describe the production, properties and scientific potential of the XMM-Newton catalogue of serendipitous X-ray sources. The first version of this catalogue is nearing completion and is planned to be released before the end of 2002.
Thanks to the large collecting area (3 x ~1500 cm$^2$ at 1.5 keV) and wide field of view (30 across in full field mode) of the X-ray cameras on board the European Space Agency X-ray observatory XMM-Newton, each individual pointing can result in the d etection of hundreds of X-ray sources, most of which are newly discovered. Recently, many improvements in the XMM-Newton data reduction algorithms have been made. These include enhanced source characterisation and reduced spurious source detections, refined astrometric precision, greater net sensitivity and the extraction of spectra and time series for fainter sources, with better signal-to-noise. Further, almost 50% more observations are in the public domain compared to 2XMMi-DR3, allowing the XMM-Newton Survey Science Centre (XMM-SSC) to produce a much larger and better quality X-ray source catalogue. The XMM-SSC has developed a pipeline to reduce the XMM-Newton data automatically and using improved calibration a new catalogue version has been produced from XMM-Newton data made public by 2013 Dec. 31 (13 years of data). Manual screening ensures the highest data quality. This catalogue is known as 3XMM. In the latest release, 3XMM-DR5, there are 565962 X-ray detections comprising 396910 unique X-ray sources. For the 133000 brightest sources, spectra and lightcurves are provided. For all detections, the positions on the sky, a measure of the quality of the detection, and an evaluation of the X-ray variability is provided, along with the fluxes and count rates in 7 X-ray energy bands, the total 0.2-12 keV band counts, and four hardness ratios. To identify the detections, a cross correlation with 228 catalogues is also provided for each X-ray detection. 3XMM-DR5 is the largest X-ray source catalogue ever produced. Thanks to the large array of data products, it is an excellent resource in which to find new and extreme objects.
Sky surveys produce enormous quantities of data on extensive regions of the sky. The easiest way to access this information is through catalogues of standardised data products. {em XMM-Newton} has been surveying the sky in the X-ray, ultra-violet, an d optical bands for 20 years. The {em XMM-Newton} Survey Science Centre has been producing standardised data products and catalogues to facilitate access to the serendipitous X-ray sky. Using improved calibration and enhanced software, we re-reduced all of the 14041 {em XMM-Newton} X-ray observations, of which 11204 observations contained data with at least one detection and with these we created a new, high quality version of the {em XMM-Newton} serendipitous source catalogue, 4XMM-DR9. 4XMM-DR9 contains 810795 detections down to a detection significance of 3 $sigma$, of which 550124 are unique sources, which cover 1152 degrees$^{2}$ (2.85%) of the sky. Filtering 4XMM-DR9 to retain only the cleanest sources with at least a 5 $sigma$ detection significance leaves 433612 detections. Of these detections, 99.6% have no pileup. Furthermore, 336 columns of information on each detection are provided, along with images. The quality of the source detection is shown to have improved significantly with respect to previo
The XMM-Newton Serendipitous Ultraviolet Source Survey (XMM-SUSS) is a catalogue of ultraviolet (UV) sources detected serendipitously by the Optical Monitor (XMM-OM) on-board the XMM-Newton observatory. The catalogue contains ultraviolet-detected sou rces collected from 2,417 XMM-OM observations in 1-6 broad band UV and optical filters, made between 24 February 2000 and 29 March 2007. The primary contents of the catalogue are source positions, magnitudes and fluxes in 1 to 6 passbands, and these are accompanied by profile diagnostics and variability statistics. The XMM-SUSS is populated by 753,578 UV source detections above a 3 sigma signal-to-noise threshold limit which relate to 624,049 unique objects. Taking account of substantial overlaps between observations, the net sky area covered is 29-54 square degrees, depending on UV filter. The magnitude distributions peak at 20.2, 20.9 and 21.2 in UVW2, UVM2 and UVW1 respectively. More than 10 per cent of sources have been visited more than once using the same filter during XMM-Newton operation, and > 20 per cent of sources are observed more than once per filter during an individual visit. Consequently, the scope for science based on temporal source variability on timescales of hours to years is broad. By comparison with other astrophysical catalogues we test the accuracy of the source measurements and define the nature of the serendipitous UV XMM-OM source sample. The distributions of source colours in the UV and optical filters are shown together with the expected loci of stars and galaxies, and indicate that sources which are detected in multiple UV bands are predominantly star-forming galaxies and stars of type G or earlier.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا