ترغب بنشر مسار تعليمي؟ اضغط هنا

An Improved Diffuse Foreground Subtraction by ILC method: CMB Map and Angular Power Spectrum using Planck and WMAP Observations

70   0   0.0 ( 0 )
 نشر من قبل Rajib Saha
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Vipin Sudevan




اسأل ChatGPT حول البحث

We report an improved technique for diffuse foreground minimization from Cosmic Microwave Background (CMB) maps using a new multi-phase iterative internal-linear-combination (ILC) approach in harmonic space. The new procedure consists of two phases. In phase 1, a diffuse foreground cleaned map is obtained by performing a usual ILC operation in the harmonic space in a single iteration over the desired portion of the sky. In phase 2, we obtain the final foreground cleaned map using an iterative ILC approach also in the harmonic space, however, now, during each iteration of foreground minimization, some of the regions of the sky that are not being cleaned in the current iteration, are replaced by the corresponding cleaned portions of the phase 1 cleaned map. The new ILC method nullifies a foreground leakage signal that is otherwise inevitably present in the old and usual harmonic space iterative ILC method. The new method is flexible to handle input frequency maps, irrespective of whether or not they initially have the same instrumental and pixel resolution, by bringing them to a common and maximum possible beam and pixel resolution at the beginning of the analysis. This dramatically reduces data redundancy and hence memory usage and computational cost. During the ILC weight calculation it avoids any need to deconvolve partial sky spherical harmonic coefficients by the beam and pixel window functions, which in strict mathematical sense, is not well-defined for azimuthally symmetric window functions. Using WMAP 9-year and Planck-2015 published frequency maps we obtain a pair of foreground cleaned CMB maps and CMB angular power spectrum. Our power spectrum match well with Planck-2015 results, with some difference. Finally, we show that the weights for ILC foreground minimization have an intrinsic characteristic that it tends to produce a statistically isotropic CMB map as well.



قيم البحث

اقرأ أيضاً

We present a novel estimate of the cosmological microwave background (CMB) map by combining the two latest full-sky microwave surveys: WMAP nine-year and Planck PR1. The joint processing benefits from a recently introduced component separation method coined local-generalized morphological component analysis (LGMCA) based on the sparse distribution of the foregrounds in the wavelet domain. The proposed estimation procedure takes advantage of the IRIS 100 micron as an extra observation on the galactic center for enhanced dust removal. We show that this new CMB map presents several interesting aspects: i) it is a full sky map without using any inpainting or interpolating method, ii) foreground contamination is very low, iii) the Galactic center is very clean, with especially low dust contamination as measured by the cross-correlation between the estimated CMB map and the IRIS 100 micron map, and iv) it is free of thermal SZ contamination.
We quantify the contamination from polarized diffuse Galactic synchrotron and thermal dust emissions to the B-modes of the CMB anisotropies on the degree angular scale, using data from the Planck and WMAP satellites. We compute power spectra of foreg round polarized emissions in 352 circular sky patches located at Galactic latitude |b|>20{deg}, each of which covering a fraction of the sky of about 1.5%. We make use of the spectral properties derived from Planck and WMAP data to extrapolate, in frequency, the amplitude of synchrotron and thermal dust B-modes spectra in the multipole bin centered at $ellsimeq80$. In this way we estimate, for each analyzed region, the amplitude and frequency of the foreground minimum. We detect both dust and synchrotron signal, at degree angular scale and at 3 confidence level, in 28 regions. Here the minimum of the foreground emission is found at frequencies between 60 and 100 GHz with an amplitude,expressed in terms of the equivalent tensor-to-scalar ratio, r_FG, between ~0.06 and ~1. Some of these regions are located at high Galactic latitudes, in areas close to the ones which are being observed by sub-orbital experiments.In all the other sky patches, where synchrotron or dust B-modes are not detectable with the required confidence, we put upper limits on the minimum foreground contamination and find values of r_FG between ~0.05 and ~1.5, in the frequency range 60-90 GHz. Our results indicate that, with the current sensitivity at low frequency, it is not possible to exclude the presence of synchrotron contamination to CMB cosmological B-modes at the level requested to measure a gravitational waves signal with r~0.01, at frequency <100 GHz, anywhere. Therefore, more accurate data are essential in order to better characterize the synchrotron polarized component, and eventually, remove its contamination to CMB signal through foreground cleaning.
142 - A. van Engelen 2013
The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to ACT and SPT. Achieving significant improvements in cosmological paramete r constraints, such as percent level errors on sigma_8 and an uncertainty on the total neutrino mass of approximately 50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zeldovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with masses above M_vir = 10^14 M_sun. To achieve such percent level bias, we find that only modes up to a maximum multipole of l_max ~ 2500 should be included in the lensing reconstruction. We also discuss ways to minimize additional bias induced by such aggressive foreground masking by, for example, exploring a two-step masking and in-painting algorithm.
The cosmic expansion is computed for various dynamical vacuum models $Lambda(H)$ and confronted to the Cosmic Microwave Background (CMB) power spectrum from Planck. We also combined CMB in a joint analysis with other probes in order to place constrai nts on the cosmological parameters of the dynamical vacuum models. We find that all $Lambda(H)$ models are very efficient and in very good agreement with the data. Considering that the interaction term of the dark sector is given in terms of matter and radiation densities, we find that the corresponding $Lambda(H)$ model shows a small but non-zero deviation from $Lambda$ cosmology, nevertheless the confidence level is close to $sim 2.5sigma$.
74 - G. Hinshaw 2003
We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The dat a are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking ~700 known bright sources from the maps, we estimate residual sources contribute ~3500 uK^2 at 41 GHz, and ~130 uK^2 at 94 GHz, to the power spectrum l*(l+1)*C_l/(2*pi) at l=1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to l~350. The spectrum clearly exhibits a first acoustic peak at l=220 and a second acoustic peak at l~540 and it provides strong support for adiabatic initial conditions. Kogut et al. (2003) analyze the C_l^TE power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by ~30% on degree angular scales, due to secondary scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا