ﻻ يوجد ملخص باللغة العربية
We report an improved technique for diffuse foreground minimization from Cosmic Microwave Background (CMB) maps using a new multi-phase iterative internal-linear-combination (ILC) approach in harmonic space. The new procedure consists of two phases. In phase 1, a diffuse foreground cleaned map is obtained by performing a usual ILC operation in the harmonic space in a single iteration over the desired portion of the sky. In phase 2, we obtain the final foreground cleaned map using an iterative ILC approach also in the harmonic space, however, now, during each iteration of foreground minimization, some of the regions of the sky that are not being cleaned in the current iteration, are replaced by the corresponding cleaned portions of the phase 1 cleaned map. The new ILC method nullifies a foreground leakage signal that is otherwise inevitably present in the old and usual harmonic space iterative ILC method. The new method is flexible to handle input frequency maps, irrespective of whether or not they initially have the same instrumental and pixel resolution, by bringing them to a common and maximum possible beam and pixel resolution at the beginning of the analysis. This dramatically reduces data redundancy and hence memory usage and computational cost. During the ILC weight calculation it avoids any need to deconvolve partial sky spherical harmonic coefficients by the beam and pixel window functions, which in strict mathematical sense, is not well-defined for azimuthally symmetric window functions. Using WMAP 9-year and Planck-2015 published frequency maps we obtain a pair of foreground cleaned CMB maps and CMB angular power spectrum. Our power spectrum match well with Planck-2015 results, with some difference. Finally, we show that the weights for ILC foreground minimization have an intrinsic characteristic that it tends to produce a statistically isotropic CMB map as well.
We present a novel estimate of the cosmological microwave background (CMB) map by combining the two latest full-sky microwave surveys: WMAP nine-year and Planck PR1. The joint processing benefits from a recently introduced component separation method
We quantify the contamination from polarized diffuse Galactic synchrotron and thermal dust emissions to the B-modes of the CMB anisotropies on the degree angular scale, using data from the Planck and WMAP satellites. We compute power spectra of foreg
The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to ACT and SPT. Achieving significant improvements in cosmological paramete
The cosmic expansion is computed for various dynamical vacuum models $Lambda(H)$ and confronted to the Cosmic Microwave Background (CMB) power spectrum from Planck. We also combined CMB in a joint analysis with other probes in order to place constrai
We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The dat