ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering hidden flows in physical networks

124   0   0.0 ( 0 )
 نشر من قبل Chengwei Wang
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the interactions among nodes in a complex network is of great importance, since they disclose how these nodes are cooperatively supporting the functioning of the network. Scientists have developed numerous methods to uncover the underlying adjacent physical connectivity based on measurements of functional quantities of the nodes states. Often, the physical connectivity, the adjacency matrix, is available. Yet, little is known about how this adjacent connectivity impacts on the hidden flows being exchanged between any two arbitrary nodes, after travelling longer non-adjacent paths. In this Letter, we show that hidden physical flows in conservative flow networks, a quantity that is usually inaccessible to measurements, can be determined by the interchange of physical flows between any pair of adjacent nodes. Our approach applies to steady or dynamic state of either linear or non-linear complex networks that can be modelled by conservative flow networks, such as gas supply networks, water supply networks and power grids.



قيم البحث

اقرأ أيضاً

Interactions between elements, which are usually represented by networks, have to delineate potentially unequal relationships in terms of their relative importance or direction. The intrinsic unequal relationships of such kind, however, are opaque or hidden in numerous real systems.For instance, when a node in a network with limited interaction capacity spends its capacity to its neighboring nodes, the allocation of the total amount of interactions to them can be vastly diverse. Even if such potentially heterogeneous interactions epitomized by weighted networks are observable, as a result of the aforementioned ego-centric allocation of interactions, the relative importance or dependency between two interacting nodes can only be implicitly accessible. In this work, we precisely pinpoint such relative dependency by proposing the framework to discover hidden dependent relations extracted from weighted networks. For a given weighted network, we provide a systematic criterion to select the most essential interactions for individual nodes based on the concept of information entropy. The criterion is symbolized by assigning the effective number of neighbors or the effective out-degree to each node, and the resultant directed subnetwork decodes the hidden dependent relations by leaving only the most essential directed interactions. We apply our methodology to two time-stamped empirical network data, namely the international trade relations between nations in the world trade web (WTW) and the network of people in the historical record of Korea, Annals of the Joseon Dynasty (AJD). Based on the data analysis, we discover that the properties of mutual dependency encoded in the two systems are vastly different.
Metabolism is a fascinating cell machinery underlying life and disease and genome-scale reconstructions provide us with a captivating view of its complexity. However, deciphering the relationship between metabolic structure and function remains a maj or challenge. In particular, turning observed structural regularities into organizing principles underlying systemic functions is a crucial task that can be significantly addressed after endowing complex network representations of metabolism with the notion of geometric distance. Here, we design a cartographic map of metabolic networks by embedding them into a simple geometry that provides a natural explanation for their observed network topology and that codifies node proximity as a measure of hidden structural similarities. We assume a simple and general connectivity law that gives more probability of interaction to metabolite/reaction pairs which are closer in the hidden space. Remarkably, we find an astonishing congruency between the architecture of E. coli and human cell metabolisms and the underlying geometry. In addition, the formalism unveils a backbone-like structure of connected biochemical pathways on the basis of a quantitative cross-talk. Pathways thus acquire a new perspective which challenges their classical view as self-contained functional units.
Complex networks have acquired a great popularity in recent years, since the graph representation of many natural, social and technological systems is often very helpful to characterize and model their phenomenology. Additionally, the mathematical to ols of statistical physics have proven to be particularly suitable for studying and understanding complex networks. Nevertheless, an important obstacle to this theoretical approach is still represented by the difficulties to draw parallelisms between network science and more traditional aspects of statistical physics. In this paper, we explore the relation between complex networks and a well known topic of statistical physics: renormalization. A general method to analyze renormalization flows of complex networks is introduced. The method can be applied to study any suitable renormalization transformation. Finite-size scaling can be performed on computer-generated networks in order to classify them in universality classes. We also present applications of the method on real networks.
We introduce Mercator, a reliable embedding method to map real complex networks into their hyperbolic latent geometry. The method assumes that the structure of networks is well described by the Popularity$times$Similarity $mathbb{S}^1/mathbb{H}^2$ st atic geometric network model, which can accommodate arbitrary degree distributions and reproduces many pivotal properties of real networks, including self-similarity patterns. The algorithm mixes machine learning and maximum likelihood approaches to infer the coordinates of the nodes in the underlying hyperbolic disk with the best matching between the observed network topology and the geometric model. In its fast mode, Mercator uses a model-adjusted machine learning technique performing dimensional reduction to produce a fast and accurate map, whose quality already outperform other embedding algorithms in the literature. In the refined Mercator mode, the fast-mode embedding result is taken as an initial condition in a Maximum Likelihood estimation, which significantly improves the quality of the final embedding. Apart from its accuracy as an embedding tool, Mercator has the clear advantage of systematically inferring not only node orderings, or angular positions, but also the hidden degrees and global model parameters, and has the ability to embed networks with arbitrary degree distributions. Overall, our results suggest that mixing machine learning and maximum likelihood techniques in a model-dependent framework can boost the meaningful mapping of complex networks.
Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not rando m combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the individual layers. We find that these correlations are strong in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate: (i) the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers; (ii) accurate trans-layer link prediction, where connections in one layer can be predicted by observing the hidden geometric space of another layer; and (iii) efficient targeted navigation in the multilayer system using only local knowledge, which outperforms navigation in the single layers only if the geometric correlations are sufficiently strong. Our findings uncover fundamental organizing principles behind real multiplexes and can have important applications in diverse domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا