ترغب بنشر مسار تعليمي؟ اضغط هنا

Young stars in the periphery of the Large Magellanic Cloud

78   0   0.0 ( 0 )
 نشر من قبل Christian Moni Bidin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite their close proximity, the complex interplay between the two Magellanic Clouds, the Milky Way, and the resulting tidal features, is still poorly understood. Recent studies have shown that the Large Magellanic Cloud (LMC) has a very extended disk strikingly perturbed in its outskirts. We search for recent star formation in the far outskirts of the LMC, out to ~30 degrees from its center. We have collected intermediate-resolution spectra of thirty-one young star candidates in the periphery of the LMC and measured their radial velocity, stellar parameters, distance and age. Our measurements confirm membership to the LMC of six targets, for which the radial velocity and distance values match well those of the Cloud. These objects are all young (10-50 Myr), main-sequence stars projected between 7 and 13 degrees from the center of the parent galaxy. We compare the velocities of our stars with those of a disk model, and find that our stars have low to moderate velocity differences with the disk model predictions, indicating that they were formed in situ. Our study demonstrates that recent star formation occurred in the far periphery of the LMC, where thus far only old objects were known. The spatial configuration of these newly-formed stars appears ring-like with a radius of 12 kpc, and a displacement of 2.6 kpc from the LMCs center. This structure, if real, would be suggestive of a star-formation episode triggered by an off-center collision between the Small Magellanic Cloud and the LMCs disk.



قيم البحث

اقرأ أيضاً

The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (~100 km/s) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birth places at the very beginning of their parent clusters dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach however is complicated by the large distance to the LMC, which makes accurate proper motion measurements difficult. We use an alternative approach for solving the problem, based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion and thereby to determine their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars which were suggested in the literature as candidate runaway stars. Using archival (Spitzer Space Telescope) data, we found a bow shock associated with one of our program stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ~120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star forming complex.
The kinematics of 150 carbon stars observed at moderate dispersion on the periphery of the Small Magellanic Cloud are compared with the motions of neutral hydrogen and early type stars in the Inter-Cloud region. The distribution of radial velocities implies a configuration of these stars as a sheet inclined at 73+/-4 degrees to the plane of the sky. The near side, to the South, is dominated by a stellar component; to the North, the far side contains fewer carbon stars, and is dominated by the neutral gas. The upper velocity envelope of the stars is closely the same as that of the gas. This configuration is shown to be consistent with the known extension of the SMC along the line of sight, and is attributed to a tidally induced disruption of the SMC that originated in a close encounter with the LMC some 0.3 to 0.4 Gyr ago. The dearth of gas on the near side of the sheet is attributed to ablation processes akin to those inferred by Weiner & Williams (1996) to collisional excitation of the leading edges of Magellanic Stream clouds. Comparison with pre LMC/SMC encounter kinematic data of Hardy, Suntzeff, & Azzopardi (1989) of carbon stars, with data of stars formed after the encounter, of Maurice et al. (1989), and Mathewson et al. (a986, 1988) leaves little doubt that forces other than gravity play a role in the dynamics of the H I.
Massive star evolution at low metallicity is closely connected to many fields in high-redshift astrophysics, but poorly understood. The Small Magellanic Cloud (SMC) is a unique laboratory to study this because of its metallicity of 0.2 Zsol, its prox imity, and because it is currently forming stars. We used a spectral type catalog in combination with GAIA magnitudes to calculate temperatures and luminosities of bright SMC stars. By comparing these with literature studies, we tested the validity of our method, and using GAIA data, we estimated the completeness of stars in the catalog as a function of luminosity. This allowed us to obtain a nearly complete view of the most luminous stars in the SMC. When then compared with stellar evolution predictions. We also calculated the extinction distribution, the ionizing photon production rate, and the star formation rate. Our results imply that the SMS hosts only 30 very luminous main-sequence stars (M > 40 Msol; L > 10^5 Lsol), which are far fewer than expected from the number of stars in the luminosity range 3*10^4 < L/Lsol < 3*10^5 and from the typically quoted star formation rate in the SMC. Even more striking, we find that for masses above M > 20 Msol, stars in the first half of their hydrogen-burning phase are almost absent. This mirrors a qualitatively similar peculiarity that is known for the Milky Way and Large Magellanic Cloud. This amounts to a lack of hydrogen-burning counterparts of helium-burning stars, which is more pronounced for higher luminosities. We argue that a declining star formation rate or a steep initial mass function are unlikely to be the sole explanations for the dearth of young bright stars. Instead, many of these stars might be embedded in their birth clouds, although observational evidence for this is weak. We discuss implications for cosmic reionization and the top end of the initial mass function.
69 - Bi-Qing For , Kenji Bekki 2017
Recent studies have shown that an extended main-sequence turn-off is a common feature among intermediate-age clusters (1--3 Gyr) in the Magellanic Clouds. Multiple-generation star formation and stellar rotation or interacting binaries have been propo sed to explain the feature. However, it remains controversial in the field of stellar populations. Here we present the main results of an ongoing star formation among older star clusters in the Large Magellanic Cloud. Cross-matching the positions of star clusters and young stellar objects has yielded 15 matches with 7 located in the cluster center. We demonstrate that this is not by chance by estimating local number densities of young stellar objects for each star cluster. This method is not based on isochrone fitting, which leads to some uncertainties in age estimation and methods of background subtraction. We also find no direct correlation between atomic hydrogen and the clusters. This suggests that gas accretion for fueling the star formation must be happening in situ. These findings support for the multiple-generations scenario as a plausible explanation for the extended main-sequence turn-off.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا