ﻻ يوجد ملخص باللغة العربية
An appealing definition of the term molecule arises from consideration of the nature of fluorescence, with discrete molecular entities emitting a stream of single photons. We address the question of how large a molecular object may become by growing deterministic aggregates from single conjugated polymer chains. Even particles containing dozens of individual chains still behave as single quantum emitters due to efficient excitation energy transfer, while the brightness is raised due to the increased absorption cross-section of the suprastructure. Excitation energy can delocalize between individual polymer chromophores in these aggregates by both coherent and incoherent coupling, which are differentiated by their distinct spectroscopic fingerprints. Coherent coupling is identified by a ten-fold increase in excited-state lifetime and a corresponding spectral red shift. Exciton quenching due to incoherent FRET becomes more significant as aggregate size increases, resulting in single-aggregate emission characterized by strong blinking. This mesoscale approach allows us to identify intermolecular interactions which do not exist in isolated chains and are inaccessible in bulk films where they are present but masked by disorder.
Triplet excitons have been the focus of considerable attention with regards to the functioning of polymer solar cells, because these species are long-lived and quench subsequently generated singlet excitons in their vicinity. The role of triplets in
Optical absorption spectra of poly(thiophene vinylene) (PTV) conjugated polymers have been studied at room temperature in the spectral range of 450 to 800 nm. A dominant peak located at 577 nm and a prominent shoulder at 619 nm are observed. Another
The exciton relaxation dynamics of photoexcited electronic states in poly($p$-phenylenevinylene) (PPV) are theoretically investigated within a coarse-grained model, in which both the exciton and nuclear degrees of freedom are treated quantum mechanic
Organic semiconductors have the remarkable property that their optical excitation not only generates charge-neutral electron-hole pairs (excitons) but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this cha
Intimately connected to the rule of life, chirality remains a long-time fascination in biology, chemistry, physics and materials science. Chiral structures, e.g., nucleic acid and cholesteric phase developed from chiral molecules are common in nature