ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic Shapiro Delay to the Crab Pulsar and limit on Einsteins Equivalence Principle Violation

96   0   0.0 ( 0 )
 نشر من قبل Shantanu Desai
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the total galactic Shapiro delay to the Crab pulsar by including the contributions from the dark matter as well as baryonic matter along the line of sight. The total delay due to dark matter potential is about 3.4 days. For baryonic matter, we included the contributions from both the bulge and the disk, which are approximately 0.12 and 0.32 days respectively. The total delay from all the matter distribution is therefore 3.84 days. We also calculate the limit on violations of Einsteins equivalence principle by using observations of nano-shot giant pulses from the Crab pulsar with time-delay $<0.4$~ns as well as using time differences between radio and optical photons observed from this pulsar. Using the former, we obtain a limit on violation of Einsteins equivalence principle in terms of the PPN parameter $Delta gamma < 2.41times 10^{-15}$. From the time-difference between simultaneous optical and radio observations, we get $Delta gamma < 1.54times 10^{-9}$. We also point out differences in our calculation of Shapiro delay and that from two recent papers (arXiv:1612.00717 and arXiv:1608.07657), which used the same observations to obtain a corresponding limit on $Delta gamma$.

قيم البحث

اقرأ أيضاً

We report here the results of operation of a torsion balance with a period of $sim 1.27 times 10^4$ s. The analysis of data collected over a period of $sim$115 days shows that the difference in the accelerations towards the Galactic Center of test bo dies made of aluminum and quartz was $(0.61 pm 1.27) times 10^{-15} , mathrm{ m , s}^{-2}$. This sets a bound on the violation of the equivalence principle by forces exerted by Galactic dark matter which is expressed by the Eotvos parameter $eta_{DM} = (1.32 pm 2.68) times 10^{-5}$, a significant improvement upon earlier bounds.
The time delay experienced by a light ray as it passes through a changing gravitational potential by a non-zero mass distribution along the line of sight is usually referred to as Shapiro delay. Shapiro delay has been extensively measured in the Sola r system and in binary pulsars, enabling stringent tests of general relativity as well as measurement of neutron star masses . However, Shapiro delay is ubiquitous and experienced by all astrophysical messengers on their way from the source to the Earth. We calculate the one-way static Shapiro delay for the first discovered millisecond pulsar PSR~B1937+21, by including the contributions from both the dark matter and baryonic matter between this pulsar and the Earth. We find a value of approximately 5 days (of which 4.74 days is from the dark matter and 0.22 days from the baryonic matter). We also calculate the modulation of Shapiro delay from the motion of a single dark matter halo, and also evaluate the cumulative effects of the motion of matter distribution on the change in pulsars period and its derivative. The time-dependent effects are too small to be detected with the current timing noise observed for this pulsar. Finally, we would like to emphasize that although the one-way Shapiro delay is mostly of academic interest for electromagnetic astronomy, its ubiquity should not be forgotten in the era of multi-messenger astronomy.
Among the information provided by high energy neutrinos, a promising possibility is to analyze the effects of a Violation of Equivalence Principle (VEP) on neutrino oscillations. We analyze the recently released IceCube data on atmospheric neutrino f luxes under the assumption of a VEP and obtain updated constraints on the parameter space with the benchmark choice that neutrinos with different masses couple with different strengths to the gravitational field. In this case we find that the VEP parameters times the local gravitational potential at Earth can be constrained at the level of $10^{-27}$. We show that the constraints from atmospheric neutrinos strongly depend on the assumption that the neutrino eigenstates interacting diagonally with the gravitational field coincide with the mass eigenstates, which is not textit{a priori} justified: this is particularly clear in the case that the basis of diagonal gravitational interaction coincide with the flavor basis, which cannot be constrained by the observation of atmospheric neutrinos. Finally, we quantitatively study the effect of a VEP on the flavor composition of the astrophysical neutrinos, stressing again the interplay with the basis in which the VEP is diagonal: we find that for some choices of such basis the flavor ratio measured by IceCube can significantly change.
Among the information provided by high energy neutrinos, a promising possibility is to analyze the effects of a Violation of Equivalence Principle (VEP) on neutrino oscillations. We analyze the IceCube data on atmospheric neutrino fluxes under the as sumption of a VEP and obtain updated constraints on the parameter space with the benchmark choice that neutrinos with different masses couple with different strengths to the gravitational field. In this case we find that the VEP parameters times the local gravitational potential at Earth can be constrained at the level of $10^{-27}$. We show that the constraints from atmospheric neutrinos strongly depend on the assumption that the neutrino eigenstates interacting diagonally with the gravitational field coincide with the mass eigenstates, which is not a priori justified: this is particularly clear in the case that the basis of diagonal gravitational interaction coincide with the flavor basis, which cannot be constrained by the observation of atmospheric neutrinos. Finally, we quantitatively study the effect of a VEP on the flavor composition of the astrophysical neutrinos, stressing again the interplay with the basis in which the VEP is diagonal: we find that for some choices of such basis the flavor ratio measured by IceCube can significantly change.
The symmetry of the theory of relativity under diffeomorphisms strongly depends on the equivalence principle. Violation of Equivalence Principle (VEP) can be tested by looking for deviations from the standard framework of neutrino oscillations. In re cent works, it has been shown that strong constraints on the VEP parameter space can be placed by means of the atmospheric neutrinos observed by the IceCube neutrino telescope. In this paper, we focus on the KM3NeT neutrino telescope and perform a forecast analysis to assess its capacity to probe VEP. Most importantly, we examine the crucial role played by systematic uncertainties affecting the neutrino observations. We find that KM3NeT will constrain VEP parameters times the local gravitational potential at the level of $10^{-27}$. Due to the systematic-dominated regime, independent analyses from different neutrino telescopes are fundamental for robustly testing the equivalence principle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا