ﻻ يوجد ملخص باللغة العربية
We discuss the 4pt function of the critical 3d Ising model, extracted from recent conformal bootstrap results. We focus on the non-gaussianity Q - the ratio of the 4pt function to its gaussian part given by three Wick contractions. This ratio reveals significant non-gaussianity of the critical fluctuations. The bootstrap results are consistent with a rigorous inequality due to Lebowitz and Aizenman, which limits Q to lie between 1/3 and 1.
We perform Monte-Carlo simulations of the three-dimensional Ising model at the critical temperature and zero magnetic field. We simulate the system in a ball with free boundary conditions on the two dimensional spherical boundary. Our results for one
How can a renormalization group fixed point be scale invariant without being conformal? Polchinski (1988) showed that this may happen if the theory contains a virial current -- a non-conserved vector operator of dimension exactly $(d-1)$, whose diver
We investigate the properties of the twist line defect in the critical 3d Ising model using Monte Carlo simulations. In this model the twist line defect is the boundary of a surface of frustrated links or, in a dual description, the Wilson line of th
We estimate thermal one-point functions in the 3d Ising CFT using the operator product expansion (OPE) and the Kubo-Martin-Schwinger (KMS) condition. Several operator dimensions and OPE coefficients of the theory are known from the numerical bootstra
We study the massless flows described by the staircase model introduced by Al.B. Zamolodchikov through the analytic continuation of the sinh-Gordon S-matrix, focusing on the renormalisation group flow from the tricritical to the critical Ising model.