ترغب بنشر مسار تعليمي؟ اضغط هنا

An Empirical Fitting Method for Type Ia Supernova Light Curves: A Case Study of SN 2011fe

126   0   0.0 ( 0 )
 نشر من قبل WeiKang Zheng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف WeiKang Zheng




اسأل ChatGPT حول البحث

We present a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe~Ia). We find that a variant broken-power-law function provides a good fit, with the simple assumption that the optical emission is approximately the blackbody emission of the expanding fireball. This function is mathematically analytic and is derived directly from the photospheric velocity evolution. When deriving the function, we assume that both the blackbody temperature and photospheric velocity are constant, but the final function is able to accommodate these changes during the fitting procedure. Applying it to the case study of SN~2011fe gives a surprisingly good fit that can describe the light curves from the first-light time to a few weeks after peak brightness, as well as over a large range of fluxes ($sim 5$, mag, and even $sim 7$,mag in the $g$ band). Since SNe~Ia share similar light-curve shapes, this fitting method has the potential to fit most other SNe~Ia and characterize their properties in large statistical samples such as those already gathered and in the near future as new facilities become available.



قيم البحث

اقرأ أيضاً

198 - WeiKang Zheng 2016
We investigate a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe~Ia) that is able to estimate the first-light time of SNe~Ia, even when they are not discovered extremely early. With an improved ability to estimate the time of first light for SNe Ia, we compute the rise times for a sample of 56 well-observed SNe~Ia. We find rise times ranging from 10.5 to 20.5 days, with a mean of 16.0 days, and confirm that the rise time is generally correlated with the decline rate $Delta m_{15}(B)$, but with large scatter. The rise time could be an additional parameter to help classify SN~Ia subtypes.
We present SiFTO, a new empirical method for modeling type Ia supernovae (SNe Ia) light curves by manipulating a spectral template. We make use of high-redshift SN observations when training the model, allowing us to extend it bluer than rest frame U . This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. We compare SiFTO to other published light-curve models by applying them to the same set of SN photometry, and demonstrate that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best fit luminosity distance relationship. We further demonstrate that when SiFTO and SALT2 are trained on the same data set the cosmological results agree.
We present late-time optical $R$-band imaging data from the Palomar Transient Factory (PTF) for the nearby type Ia supernova SN 2011fe. The stacked PTF light curve provides densely sampled coverage down to $Rsimeq22$ mag over 200 to 620 days past exp losion. Combining with literature data, we estimate the pseudo-bolometric light curve for this event from 200 to 1600 days after explosion, and constrain the likely near-infrared contribution. This light curve shows a smooth decline consistent with radioactive decay, except over ~450 to ~600 days where the light curve appears to decrease faster than expected based on the radioactive isotopes presumed to be present, before flattening at around 600 days. We model the 200-1600d pseudo-bolometric light curve with the luminosity generated by the radioactive decay chains of $^{56}$Ni, $^{57}$Ni and $^{55}$Co, and find it is not consistent with models that have full positron trapping and no infrared catastrophe (IRC); some additional energy escape other than optical/near-IR photons is required. However, the light curve is consistent with models that allow for positron escape (reaching 75% by day 500) and/or an IRC (with 85% of the flux emerging in non-optical wavelengths by day 600). The presence of the $^{57}$Ni decay chain is robustly detected, but the $^{55}$Co decay chain is not formally required, with an upper mass limit estimated at 0.014 M$_{odot}$. The measurement of the $^{57}$Ni/$^{56}$Ni mass ratio is subject to significant systematic uncertainties, but all of our fits require a high ratio >0.031 (>1.3 in solar abundances).
We examine the relationship between three parameters of Type Ia supernovae (SNe~Ia): peak magnitude, rise time, and photospheric velocity at the time of peak brightness. The peak magnitude is corrected for extinction using an estimate determined from MLCS2k2 fitting. The rise time is measured from the well-observed $B$-band light curve with the first detection at least 1~mag fainter than the peak magnitude, and the photospheric velocity is measured from the strong absorption feature of Si~II~$lambda$6355 at the time of peak brightness. We model the relationship among these three parameters using an expanding fireball with two assumptions: (a) the optical emission is approximately that of a blackbody, and (b) the photospheric temperatures of SNe~Ia are similar to each other at the time of peak brightness. We compare the precision of the distance residuals inferred using this physically motivated model against those from the empirical Phillips relation and the MLCS2k2 method for 47 low-redshift SNe~Ia ($0.005 < z< 0.04$) and find comparable scatter. However, SNe~Ia in our sample with higher velocities are inferred to be intrinsically fainter. Eliminating the high-velocity SNe and applying a more stringent extinction cut to obtain a low-v-golden sample of 22 SNe, we obtain significantly reduced scatter in the new relation, better than those of the Phillips relation and the MLCS2k2 method. After removing model peculiar velocities, our final scatter for the new relation is $0.108 pm 0.018$~mag.
We present a revised SALT2 surface (`SALT2-2021) for fitting the light curves of Type Ia supernovae (SNe Ia), which incorporates new measurements of zero-point calibration offsets and Milky Way extinction. The most notable change in the new surface o ccurs in the UV region. This new surface alters the distance measurements of SNe~Ia, which can be used to investigate the nature of dark energy by probing the expansion history of the Universe. Using the revised SALT2 surface on public data from the first three years of the Dark Energy Survey Supernova Program (combined with an external low-$z$ SNe Ia sample) and combining with cosmic microwave background constraints, we find a change in the dark energy equation of state parameter, $Delta w = 0.015 pm 0.004$. This result highlights the continued importance of controlling and reducing systematic uncertainties, particularly with the next generation of supernova analyses aiming to improve constraints on dark energy properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا