ﻻ يوجد ملخص باللغة العربية
We report the discovery of a second long-period giant planet orbiting HD 30177, a star previously known to host a massive Jupiter analog (HD 30177b: a=3.8$pm$0.1 au, m sin $i=9.7pm$0.5 Mjup). HD 30177c can be regarded as a massive Saturn analog in this system, with a=9.9$pm$1.0 au and m sin $i=7.6pm$3.1 Mjup. The formal best fit solution slightly favours a closer-in planet at $asim$7 au, but detailed n-body dynamical simulations show that configuration to be unstable. A shallow local minimum of longer-period, lower-eccentricity solutions was found to be dynamically stable, and hence we adopt the longer period in this work. The proposed $sim$32 year orbit remains incomplete; further monitoring of this and other stars is necessary to reveal the population of distant gas giant planets with orbital separations $asim$10 au, analogous to that of Saturn.
We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005pm427 days, and a minimum mass of 5.3M_Jup.
We report the discovery of two long-period giant planets from the Anglo-Australian Planet Search. HD 154857c is in a multiple-planet system, while HD 114613b appears to be solitary. HD 114613b has an orbital period P=10.5 years, and a minimum mass m
We present updated simulations of the detectability of Jupiter analogs by the 17-year Anglo-Australian Planet Search. The occurrence rate of Jupiter-like planets that have remained near their formation locations beyond the ice line is a critical datu
Our understanding of planetary systems different to our own has grown dramatically in the past 30 years. However, our efforts to ascertain the degree to which the Solar system is abnormal or unique have been hindered by the observational biases inher
We report the detection of sixteen binary systems from the Anglo-Australian Planet Search. Solutions to the radial velocity data indicate that the stars have companions orbiting with a wide range of masses, eccentricities and periods. Three of the sy