ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy equality for the 3D critical convective Brinkman-Forchheimer equations

55   0   0.0 ( 0 )
 نشر من قبل Karol Hajduk
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we give a simple proof of the existence of global-in-time smooth solutions for the convective Brinkman-Forchheimer equations (also called in the literature the tamed Navier-Stokes equations) $$ partial_tu -muDelta u + (u cdot abla)u + abla p + alpha u + beta|u|^{r - 1}u = 0 $$ on a $3$D periodic domain, for values of the absorption exponent $r$ larger than $3$. Furthermore, we prove that global, regular solutions exist also for the critical value of exponent $r = 3$, provided that the coefficients satisfy the relation $4mubeta geq 1$. Additionally, we show that in the critical case every weak solution verifies the energy equality and hence is continuous into the phase space $L^2$. As an application of this result we prove the existence of a strong global attractor, using the theory of evolutionary systems developed by Cheskidov.



قيم البحث

اقرأ أيضاً

We prove a robustness of regularity result for the $3$D convective Brinkman-Forchheimer equations $$ partial_tu -muDelta u + (u cdot abla)u + abla p + alpha u + betaabs{u}^{r - 1}u = f, $$ for the range of the absorption exponent $r in [1, 3]$ (for $r > 3$ there exist global-in-time regular solutions), i.e. we show that strong solutions of these equations remain strong under small enough changes of the initial condition and forcing function. We provide a smallness condition which is similar to the robustness conditions given for the $3$D incompressible Navier-Stokes equations by Chernyshenko et al. (2007) and Dashti & Robinson (2008).
We prove that the energy equality holds for weak solutions of the 3D Navier-Stokes equations in the functional class $L^3([0,T);V^{5/6})$, where $V^{5/6}$ is the domain of the fractional power of the Stokes operator $A^{5/12}$.
126 - Yulin Ye , Yaniqng Wang , Wei Wei 2021
It is well-known that a Leray-Hopf weak solution in $L^4 (0,T; L^4(Omega))$ for the incompressible Navier-Stokes system is persistence of energy due to Lions [19]. In this paper, it is shown that Lionss condition for energy balance is also valid for the weak solutions of the isentropic compressible Navier-Stokes equations allowing vacuum under suitable integrability conditions on the density and its derivative. This allows us to establish various sufficient conditions implying energy equality for the compressible flow as well as the non-homogenous incompressible Navier-Stokes equations. This is an improvement of corresponding results obtained by Yu in [32, Arch. Ration. Mech. Anal., 225 (2017)], and our criterion via the gradient of the velocity partially answers a question posed by Liang in [18, Proc. Roy. Soc. Edinburgh Sect. A (2020)].
Slightly compressible Brinkman-Forchheimer equations in a bounded 3D domain with Dirichlet boundary conditions are considered. These equations model fluids motion in porous media. The dissipativity of these equations in higher order energy spaces is obtained and regularity and smoothing properties of the solutions are studied. In addition, the existence of a global and an exponential attractors for these equations in a natural phase space is verified.
Consider a bounded solution of the focusing, energy-critical wave equation that does not scatter to a linear solution. We prove that this solution converges in some weak sense, along a sequence of times and up to scaling and space translation, to a s um of solitary waves. This result is a consequence of a new general compactness/rigidity argument based on profile decomposition. We also give an application of this method to the energy-critical Schrodinger equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا