ﻻ يوجد ملخص باللغة العربية
We construct a binomial tree model fitting all moments to the approximated geometric Brownian motion. Our construction generalizes the classical Cox-Ross-Rubinstein, the Jarrow-Rudd, and the Tian binomial tree models. The new binomial model is used to resolve a discontinuity problem in option pricing.
Classical option pricing schemes assume that the value of a financial asset follows a geometric Brownian motion (GBM). However, a growing body of studies suggest that a simple GBM trajectory is not an adequate representation for asset dynamics due to
The time average of geometric Brownian motion plays a crucial role in the pricing of Asian options in mathematical finance. In this paper we consider the asymptotics of the discrete-time average of a geometric Brownian motion sampled on uniformly spa
We propose an extension of the Cox-Ross-Rubinstein (CRR) model based on q-binomial (or Kemp) random walks, with application to default with logistic failure rates. This model allows us to consider time-dependent switching probabilities varying accord
In this paper we propose an extension of the Merton model. We apply the subdiffusive mechanism to analyze equity warrant in a fractional Brownian motion environment, when the short rate follows the subdiffusive fractional Black-Scholes model. We obta
The purpose of this paper is to analyze the problem of option pricing when the short rate follows subdiffusive fractional Merton model. We incorporate the stochastic nature of the short rate in our option valuation model and derive explicit formula f