ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-induced magnetic transition exceeding 30 K in the Yb-based heavy fermion superconductor $beta$-YbAlB$_4$

94   0   0.0 ( 0 )
 نشر من قبل Takahiro Tomita
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements of the electric resistivity $rho(T)$ under pressure up to 8 GPa were performed on high-quality single-crystals of the Yb-based heavy fermion system $beta$-YbAlB$_4$ in the temperature range $2<T<$ 300 K. In the resistivity data, we observed pressure-induced magnetic ordering above the critical pressure $P_{rm c} sim$ 2 GPa. Clear difference in the phase diagram under pressure using two types of pressure mediums indicates that the transition temperature may be further enhanced under application of uniaxial pressure. With pressure, this phase transition temperature $T_{rm M}$ is enhanced reaching 32 K at 8 GPa, which is the highest transition temperature so far recorded for the Yb-based heavy fermion compounds. The power-law exponent $alpha$ in $rho=rho_0+ AT^{alpha}$ below $T_{rm M}$ gradually changes from 3/2 to 5/2 with increasing pressure from 2 to 8 GPa. In contrast, the resistivity exhibits a $T$-linear behavior in the temperature range 2 $le T le$ 20 K and is insensitive to pressure below $P_{rm c}$. In this pressure regime, the magnetization is also nearly independent of pressure and shows no anomaly above 2 K. Our results indicate that a quantum critical point for $beta$-YbAlB$_4$ is also located near $P_{rm c}$ in addition to the strange metal region near the ambient pressure.



قيم البحث

اقرأ أيضاً

165 - Y. Matsumoto , K. Kuga , Y. Karaki 2009
$beta$-YbAlB$_4$ is the first Yb-based heavy fermion superconductor with $T_{rm c} = 80$ mK. We measured low temperature magnetization of high-purity single crystals down to $T=$ 25 mK. The measurements have revealed a considerable amount of volume f ractions of the superconductivity and the upper critical field $B_{c2}$ curve under field along the c axis, consistent with the previous results. In the normal state, the previously observed divergent behavior in the temperature dependence of the magnetization has been confirmed using higher quality samples and under a low field of 22 mT. In addition, the measurements have revealed a power law behavior, namely, $dM/dTpropto T^{3/2}$, which has a slightly higher exponent than the previous results.
Density functional theory methods are applied to investigate the properties of the new superconductor $beta$-YbAlB$_4$ and its polymorph $alpha$-YbAlB$_4$. We utilize the generalized gradient approximation + Hubbard U (GGA+U) approach with spin-orbit (SO) coupling to approximate the effects of the strong correlations due to the open $4f$ shell of Yb. We examine closely the differences in crystal bonding and symmetry of $beta$-YbAlB$_4$ and $alpha$-YbAlB$_4$. The in-plane bonding structure amongst the dominant itinerant electrons in the boron sheets is shown to differ significantly. Our calculations indicate that, in both polymorphs, the localized 4$f$ electrons hybridize strongly with the conduction sea when compared to the related materials YbRh$_{2}$Si$_{2}$ and YbB$_{2}$. Comparing $beta$-YbAlB$_4$ to the electronic structure of related crystal structures indicates a key role of the 7-member boron coordination of the Yb ion in $beta$-YbAlB$_4$ in producing its enhanced Kondo scale and superconductivity. The Kondo scale is shown to depend strongly on the angle between the B neighbors and the Yb ion, relative to the $x-y$ plane, which relates some of the physical behavior to structural characteristics.
We have studied the magnetization of the recently discovered heavy fermion superconductor UTe$_2$ up to 56 T in pulsed-magnetic fields. A first-order metamagnetic transition has been clearly observed at $H_{rm m}$ =34.9 T when the magnetic field $H$ is applied along the orthorhombic hard-magnetization $b$-axis. The transition has a critical end point at $sim$11 K and 34.8 T, where the first order transition terminates and changes into a crossover regime. Using the thermodynamic Maxwell relation, we have evaluated the field dependence of the Sommerfeld coefficient of the specific heat directly related to the superconducting pairing. From the analysis, we found a significant enhancement of the effective mass centered at $H_{rm m}$, which is reminiscent of the field-reentrant superconductivity of the ferromagnet URhGe in transverse fields. We discuss the origin of their field-robust superconductivity.
150 - Y. Aoki , T. Namiki , S. Ohsaki 2002
We report measurements of low-temperature specific heat on the 4f^2-based heavy-fermion superconductor PrOs4Sb12. In magnetic fields above 4.5 T in the normal state, distinct anomalies are found which demonstrate the existence of a field-induced orde red phase (FIOP). The Pr nuclear specific heat indicates an enhancement of the 4f magnetic moment in the FIOP. Utilizing a Maxwell relation, we conclude that anomalous entropy, which is expected for a single-site quadrupole Kondo model, is not concealed below 0.16 K in zero field. We also discuss two possible interpretations of the Schottky-like anomaly at ~3 K, i.e., a crystalline-field excitation or a hybridization gap formation.
$alpha$-YbAlB$_4$ is the locally isostructural polymorph of $beta$-YbAlB$_4$, the first example of an Yb-based heavy fermion superconductor which exhibits pronounced non-Fermi-liquid behavior above $T_{rm c}$. Interestingly, both $alpha$-YbAlB$_4$ an d $beta$-YbAlB$_4$ have strongly intermediate valence. Our single crystal study of the specific heat, magnetization and resistivity has confirmed the Fermi liquid ground state of $alpha$-YbAlB$_4$ ~in contrast with the quantum criticality observed in $beta$-YbAlB$_4$. Both systems exhibit Kondo lattice behavior with the characteristic temperature scale $T^* sim$ 8 K in addition to a valence fluctuation scale $sim 200$ K. Below $T^*$, $alpha$-YbAlB$_4$ a heavy Fermi liquid state with an electronic specific heat coefficient $gammasim$ 130 mJ/mol K$^2$ and a large Wilson ratio more than 7, which indicates ferromagnetic correlation between Yb moments. A large anisotropy in the resistivity suggests that the hybridization between 4$f$ and conduction electrons is much stronger in the $ab$-plane than along the c-axis. The strongly anisotropic hybridization as well as the large Wilson ratio is the key to understand the unusual Kondo lattice behavior and heavy fermion formation in mixed valent compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا