ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-scale Pressure-balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence

72   0   0.0 ( 0 )
 نشر من قبل Liping Yang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of solar wind turbulence indicate the existence of multi-scale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multi-scale PBSs and in particular their formation in compressive MHD turbulence. By the use of a higher order Godunov code Athena,a driven compressible turbulence with an imposed uniform guide field is simulated. The simulation results show that both the magnetic pressure and the thermal pressure exhibit a turbulent spectrum with a Kolmogorov-like power law, and that in many regions of the simulation domain they are anti-correlated. The computed wavelet cross-coherence spectrum of the magnetic pressure and the thermal pressure, as well as their space series, indicate the existence of multi-scale PBSs, with the small PBSs being embedded in the large ones. These multi-scale PBSs are likely to be related with the highly oblique-propagating slow-mode waves, as the traced multi-scale PBS is found to be traveling in a certain direction at a speed consistent with that predicted theoretically for a slow-mode wave propagating in the same direction.



قيم البحث

اقرأ أيضاً

322 - P.D. Mininni 2010
This article reviews recent studies of scale interactions in magnetohydrodynamic turbulence. The present day increase of computing power, which allows for the exploration of different configurations of turbulence in conducting flows, and the developm ent of shell-to-shell transfer functions, has led to detailed studies of interactions between the velocity and the magnetic field and between scales. In particular, processes such as induction and dynamo action, the damping of velocity fluctuations by the Lorentz force, or the development of anisotropies, can be characterized at different scales. In this context we consider three different configurations often studied in the literature: mechanically forced turbulence, freely decaying turbulence, and turbulence in the presence of a uniform magnetic field. Each configuration is of interest for different geophysical and astrophysical applications. Local and non-local transfers are discussed for each case. While the transfer between scales of solely kinetic or solely magnetic energy is local, transfers between kinetic and magnetic fields are observed to be local or non-local depending on the configuration. Scale interactions in the cascade of magnetic helicity are also reviewed. Based on the results, the validity of several usual assumptions in hydrodynamic turbulence, such as isotropy of the small scales or universality, is discussed.
Magnetic field are transported and tangled by turbulence, even as they lose identity due to nonideal or resistive effects. On balance field lines undergo stretch-twist-fold processes. The curvature field, a scalar that measures the tangling of the ma gnetic field lines, is studied in detail here, in the context of magnetohydrodynamic turbulence. A central finding is that the magnitudes of the curvature and the magnetic field are anti-correlated. High curvature co-locates with low magnetic field, which gives rise to power-law tails of the probability density function of the curvature field. The curvature drift term that converts magnetic energy into flow and thermal energy, largely depends on the curvature field behavior, a relationship that helps to explain particle acceleration due to curvature drift. This adds as well to evidence that turbulent effects most likely play an essential role in particle energization since turbulence drives stronger tangled field configurations, and therefore curvature.
When magnetohydrodynamic turbulence evolves in the presence of a large-scale mean magnetic field, an anisotropy develops relative to that preferred direction. The well-known tendency is to develop stronger gradients perpendicular to the magnetic fiel d, relative to the direction along the field. This anisotropy of the spectrum is deeply connected with anisotropy of estimated timescales for dynamical processes, and requires reconsideration of basic issues such as scale locality and spectral transfer. Here analysis of high-resolution three-dimensional simulations of unforced magnetohydrodynamic turbulence permits quantitative assessment of the behavior of theoretically relevant timescales in Fourier wavevector space. We discuss the distribution of nonlinear times, Alfven times, and estimated spectral transfer rates. Attention is called to the potential significance of special regions of the spectrum, such as the two-dimensional limit and the critical balance region. A formulation of estimated spectral transfer in terms of a suppression factor supports a conclusion that the quasi two-dimensional fluctuations (characterized by strong nonlinearities) are not a singular limit, but may be in general expected to make important contributions.
Energy dissipation is highly intermittent in turbulent plasmas, being localized in coherent structures such as current sheets. The statistical analysis of spatial dissipative structures is an effective approach to studying turbulence. In this paper, we generalize this methodology to investigate four-dimensional spatiotemporal structures, i.e., dissipative processes representing sets of interacting coherent structures, which correspond to flares in astrophysical systems. We develop methods for identifying and characterizing these processes, and then perform a statistical analysis of dissipative processes in numerical simulations of driven magnetohydrodynamic turbulence. We find that processes are often highly complex, long-lived, and weakly asymmetric in time. They exhibit robust power-law probability distributions and scaling relations, including a distribution of dissipated energy with power-law index near -1.75, indicating that intense dissipative events dominate the overall energy dissipation. We compare our results with the previously observed statistical properties of solar flares.
A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsasser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا