ﻻ يوجد ملخص باللغة العربية
Backward stimulated Raman scattering (BSRS) with Langmuir decay instability (LDI) and Langmuir collapse has been researched by Vlasov simulation for the first time. The decay productions of LDI cascade and their evolution with time is clearly demonstrated, which occurs simultaneously with Langmuir collapse. The BSRS reflectivity will be decreased largely through LDI cascade and Langmuir collapse. In CH plasmas, when $T_i/T_e=1/3$, the Landau damping of the slow ion-acoustic wave (IAW) is lower than that in H plasmas. Therefore, the BSRS can be further suppressed through LDI cascade by the way of controlling the species of plasmas and ions ratio. These results give an effective mechanism to suppress the BSRS and hot electrons generation.
A simple physical mechanism of stimulated light scattering on nanoscale objects in water suspension similar to Langmuir waves mechanism in plasma is proposed. The proposed mechanism is based on a dipole interaction between the light wave and the non-
Absolute instability modes due to rescattering of SRS in a large nonuniform plasma are studied theoretically and numerically. The backscattered light of convective SRS can be considered as a pump light with a finite bandwidth. The different frequency
Continuous plasma coherent emission is maintained by repetitive Langmuir collapse driven by the nonlinear evolution of a strong electron two-stream instability. The Langmuir waves are modulated by solitary waves in the linear stage, and by electrosta
The anti-Stokes scattering and Stokes scattering in stimulated Brillouin scattering (SBS) cascade have been researched by the Vlasov-Maxwell simulation. In the high-intensity laser-plasmas interaction, the stimulated anti-Stokes Brillouin scattering
Type-III-burst radio signals can be mimicked in the laboratory via laser-plasma interaction. Instead of an electron beam generating Langmuir waves (LW) in the interplanetary medium, the LWs are created by a laser interacting with a millimeter-sized p