ﻻ يوجد ملخص باللغة العربية
Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence of numerous weak, short-lived and narrow-band emission features, even during moderately quiet solar conditions. These non-thermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence, necessarily require an automated approach for their detection and characterization. Here, we employ continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this approach and present the first statistically robust characterization of the properties of these features. In particular, we examine distributions of their peak flux densities, spectral spans, temporal spans and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power law with an index of -2.23 in the 12-155 SFU range, implying that they can provide an energetically significant contribution to coronal and chromospheric heating. These features typically last for 1-2 seconds and possess bandwidths of about 4-5 MHz. Their occurrence rate remains fairly flat in the 140-210 MHz frequency range. At the time resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I bursts.
Low-frequency (80-240 MHz) radio observations of the solar corona are presented using the Murchison Widefield Array (MWA), and several discoveries are reported. The corona is reviewed, followed by chapters on Type III bursts and circularly-polarized
Spectral variability of radio sources encodes information about the conditions of intervening media, source structure, and emission processes. With new low-frequency radio interferometers observing over wide fractional bandwidths, studies of spectral
The rare intermittent pulsars pose some of the most challenging questions surrounding the pulsar emission mechanism, but typically have relatively minimal low-frequency ($lesssim$ 300 MHz) coverage. We present the first low-frequency detection of the
We present new, low-frequency images of the powerful FR I radio galaxy Hydra A (3C 218). Images were made with the Very Large Array (VLA) at frequencies of 1415, 330, and 74 MHz, with resolutions on the order of 20. The morphology of the source is se
Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter ann