ترغب بنشر مسار تعليمي؟ اضغط هنا

An Optimally Weighted Estimator of the Linear Power Spectrum Disentangling the Growth of Density Perturbations Across Galaxy Surveys

53   0   0.0 ( 0 )
 نشر من قبل Daniele Sorini
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daniele Sorini




اسأل ChatGPT حول البحث

Measuring the clustering of galaxies from surveys allows us to estimate the power spectrum of matter density fluctuations, thus constraining cosmological models. This requires careful modelling of observational effects to avoid misinterpretation of data. In particular, signals coming from different distances encode information from different epochs. This is known as light-cone effect and is going to have a higher impact as upcoming galaxy surveys probe larger redshift ranges. Generalising the method by Feldman et al. (1994), I define a minimum-variance estimator of the linear power spectrum at a fixed time, properly taking into account the light-cone effect. An analytic expression for the estimator is provided, and that is consistent with the findings of previous works in the literature. I test the method within the context of the halo model, assuming Planck 2014 cosmological parameters. I show that the estimator presented recovers the fiducial linear power spectrum at present time within 5% accuracy up to $k sim 0.80;h,mathrm{Mpc}^{-1}$ and within 10% up to $k sim 0.94;h,mathrm{Mpc}^{-1}$, well into the non-linear regime of the growth of density perturbations. As such, the method could be useful in the analysis of the data from future large-scale surveys, like Euclid.



قيم البحث

اقرأ أيضاً

We investigate the potential of the galaxy power spectrum to constrain compensated isocurvature perturbations (CIPs), primordial fluctuations in the baryon density that are compensated by fluctuations in CDM density to ensure an unperturbed total mat ter density. We show that CIPs contribute to the galaxy overdensity at linear order, and if they are close to scale-invariant, their effects are nearly perfectly degenerate with the local PNG parameter $f_{rm nl}$ if they correlate with the adiabatic perturbations. This degeneracy can however be broken by analyzing multiple galaxy samples with different bias parameters, or by taking CMB priors on $f_{rm nl}$ into account. Parametrizing the amplitude of the CIP power spectrum as $P_{sigmasigma} = A^2P_{mathcal{R}mathcal{R}}$ (where $P_{mathcal{R}mathcal{R}}$ is the adiabatic power spectrum) we find, for a number of fiducial galaxy samples in a simplified forecast setup, that constraints on $A$, relative to those on $f_{rm nl}$, of order $sigma_{A}/sigma_{f_{rm nl}} approx 1-2$ are achievable for CIPs correlated with adiabatic perturbations, and $sigma_{A}/sigma_{f_{rm nl}} approx 5$ for the uncorrelated case. These values are independent of survey volume, and suggest that current galaxy data are already able to improve significantly on the tightest existing constraints on CIPs from the CMB. Future galaxy surveys that aim to achieve $sigma_{f_{rm nl}} sim 1$ have the potential to place even stronger bounds on CIPs.
Measuring the two-point correlation function of the galaxies in the Universe gives access to the underlying dark matter distribution, which is related to cosmological parameters and to the physics of the primordial Universe. The estimation of the cor relation function for current galaxy surveys makes use of the Landy-Szalay estimator, which is supposed to reach minimal variance. This is only true, however, for a vanishing correlation function. We study the Landy-Szalay estimator when these conditions are not fulfilled and propose a new estimator that provides the smallest variance for a given survey geometry. Our estimator is a linear combination of ratios between paircounts of data and/or random catalogues (DD, RR and DR). The optimal combination for a given geometry is determined by using lognormal mock catalogues. The resulting estimator is biased in a model-dependent way, but we propose a simple iterative procedure for obtaining an unbiased model- independent estimator.Our method can be easily applied to any dataset and requires few extra mock catalogues compared to the standard Landy-Szalay analysis. Using various sets of simulated data (lognormal, second-order LPT and N-Body), we obtain a 20-25% gain on the error bars on the two-point correlation function for the SDSS geometry and $Lambda$CDM correlation function. When applied to SDSS data (DR7 and DR9), we achieve a similar gain on the correlation functions, which translates into a 10-15% improvement over the estimation of the densities of matter $Omega_m$ and dark energy $Omega_Lambda$ in an open $Lambda$CDM model. The constraints derived from DR7 data with our estimator are similar to those obtained with the DR9 data and the Landy-Szalay estimator, which covers a volume twice as large and has a density that is three times higher.
145 - Dijana Vrbanec 2020
In this paper we use radiative transfer + N-body simulations to explore the feasibility of measurements of cross-correlations between the 21cm field observed by the Square Kilometer Array (SKA) and high-z Lyman Alpha Emitters (LAEs) detected in galax y surveys with the Subaru Hyper Supreme Cam (HSC), Subaru Prime Focus Spectrograph (PFS) and Wide Field Infrared Survey Telescope (WFIRST). 21cm-LAE cross-correlations are in fact a powerful probe of the epoch of reionization as they are expected to provide precious information on the progress of reionization and the typical scale of ionized regions at different redshifts. The next generation observations with SKA will have a noise level much lower than those with its precursor radio facilities, introducing a significant improvement in the measurement of the cross-correlations. We find that an SKA-HSC/PFS observation will allow to investigate scales below ~10 Mpc/h and ~60 Mpc/h at z=7.3 and 6.6, respectively. WFIRST will allow to access also higher redshifts, as it is expected to observe spectroscopically ~900 LAEs per square degree and unit redshift in the range 7.5<z<8.5. Because of the reduction of the shot noise compared to HSC and PFS, observations with WFIRST will result in more precise cross-correlations and increased observable scales.
We discuss features of the inflaton potential that can lead to a strong enhancement of the power spectrum of curvature perturbations. We show that a steep decrease of the potential induces an enhancement of the spectrum by several orders of magnitude , which may lead to the production of primordial black holes. The same feature can also create a distinctive oscillatory pattern in the spectrum of gravitational waves generated through the scalar perturbations at second order. We study the additive effect of several such features. We analyse a simplified potential, but also discuss the possible application to supergravity models.
Measurements of the growth rate of structure, $fsigma_8$ in the low-redshift Universe allow stringent tests of the cosmological model. In this work, we provide new constraints on $fsigma_{8}$ at an effective redshift of $z=0.03$ using the combined de nsity and velocity fields measured by the 2MTF and 6dFGSv surveys. We do this by applying a new estimator of the redshift-space density and momentum (density-weighted velocity) power spectra, developed in the first paper of this series, to measured redshifts and peculiar velocities from these datasets. We combine this with models of the density and momentum power spectra in the presence of complex survey geometries and with an ensemble of simulated galaxy catalogues that match the survey selection functions and galaxy bias. We use these simulations to estimate the errors on our measurements and identify possible systematics. In particular, we are able to identify and remove biases caused by the non-Gaussianity of the power spectra by applying the Box-Cox transformation to the power spectra prior to fitting. After thorough validation of our methods we recover a constraint of $fsigma_8(z_{mathrm{eff}}=0.03)=0.404^{+0.082}_{-0.081}$ from the combined 2MTF and 6dFGSv data. This measurement is fully consistent with the expectations of General Relativity and the $Lambda$ Cold Dark Matter cosmological model. It is also comparable and complementary to constraints using different techniques on similar data, affirming the usefulness of our method for extracting cosmology from velocity fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا