ترغب بنشر مسار تعليمي؟ اضغط هنا

Attractors of sequences of function systems and their relation to non-stationary subdivision

43   0   0.0 ( 0 )
 نشر من قبل Puthan Veedu Viswanathan
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Iterated Function Systems (IFSs) have been at the heart of fractal geometry almost from its origin, and several generalizations for the notion of IFS have been suggested. Subdivision schemes are widely used in computer graphics and attempts have been made to link fractals generated by IFSs to limits generated by subdivision schemes. With an eye towards establishing connection between non-stationary subdivision schemes and fractals, this paper introduces the notion of trajectories of maps defined by function systems which may be considered as a new generalization of the traditional IFS. The significance and the convergence properties of forward and backward trajectories are studied. In contrast to the ordinary fractals which are self-similar at different scales, the attractors of these trajectories may have different structures at different scales.

قيم البحث

اقرأ أيضاً

We study the topological properties of attractors of Iterated Function Systems (I.F.S.) on the real line, consisting of affine maps of homogeneous contraction ratio. These maps define what we call a second generation I.F.S.: they are uncountably many and the set of their fixed points is a Cantor set. We prove that when this latter either is the attractor of a finite, non-singular, hyperbolic, I.F.S. (of first generation), or it possesses a particular dissection property, the attractor of the second generation I.F.S. consists of finitely many closed intervals.
The conservative sequence of a set $A$ under a transformation $T$ is the set of all $n in mathbb{Z}$ such that $T^n A cap A ot = varnothing$. By studying these sequences, we prove that given any countable collection of nonsingular transformations wi th no finite invariant measure ${T_i}$, there exists a rank-one transformation $S$ such that $T_i times S$ is not ergodic for all $i$. Moreover, $S$ can be chosen to be rigid or have infinite ergodic index. We establish similar results for $mathbb{Z}^d$ actions and flows. Then, we find sufficient conditions on rank-one transformations $T$ that guarantee the existence of a rank-one transformation $S$ such that $T times S$ is ergodic, or, alternatively, conditions that guarantee that $T times S$ is conservative but not ergodic. In particular, the infinite Chacon transformation satisfies both conditions. Finally, for a given ergodic transformation $T$, we study the Baire categories of the sets $E(T)$, $bar{E}C(T)$ and $bar{C}(T)$ of transformations $S$ such that $T times S$ is ergodic, ergodic but not conservative, and conservative, respectively.
Attractors of cooperative dynamical systems are particularly simple; for example, a nontrivial periodic orbit cannot be an attractor. This paper provides characterizations of attractors for the wider class of coherent systems, defined by the property that no directed feedback loops are negative. Several new results for cooperative systems are obtained in the process.
Spatio-temporal pattern formation over the square and rectangular domain has received significant attention from researchers. A wide range of stationary and non-stationary patterns produced by two interacting populations is abundant in the literature . Fragmented habitats are widespread in reality due to the irregularity of the landscape. This work considers a prey-predator model capable of producing a wide range of stationary and time-varying patterns over a complex habitat. The complex habitat is assumed to have consisted of two rectangular patches connected through a corridor. Our main aim is to explain how the shape and size of the fragmented habitat regulate the spatio-temporal pattern formation at the initial time. The analytical conditions are derived to ensure the existence of a stationary pattern and illustrate the role of most unstable eigenmodes to determine the number of patches for the stationary pattern. Exhaustive numerical simulations help to explain the spatial domains size and shape on the transient patterns and the duration of transient states.
This paper shows that the celebrated Embedding Theorem of Takens is a particular case of a much more general statement according to which, randomly generated linear state-space representations of generic observations of an invertible dynamical system carry in their wake an embedding of the phase space dynamics into the chosen Euclidean state space. This embedding coincides with a natural generalized synchronization that arises in this setup and that yields a topological conjugacy between the state-space dynamics driven by the generic observations of the dynamical system and the dynamical system itself. This result provides additional tools for the representation, learning, and analysis of chaotic attractors and sheds additional light on the reservoir computing phenomenon that appears in the context of recurrent neural networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا