ترغب بنشر مسار تعليمي؟ اضغط هنا

A Large--Scale Spectroscopic Survey of Methanol and OH Line Emission from the Galactic Center: Observations and Data

56   0   0.0 ( 0 )
 نشر من قبل Farhad Yusef-Zadeh
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W. Cotton




اسأل ChatGPT حول البحث

Class I methanol masers are collisionally pumped and are generally correlated with outflows in star forming sites in the Galaxy. Using the VLA in its A-array configuration, we present a spectral line survey to identify methanol $J=4_{-1}rightarrow3_0E$ emission at 36.169~GHz. Over 900 pointings were used to cover a region 66x13along the inner Galactic plane. A shallow survey of OH at 1612, 1665, 1667 and 1720 MHz was also carried out over the area covered by our methanol survey. We provide a catalog of 2240 methanol masers with narrow line-widths of $sim1$ km s$^{-1}$, spatial resolution of ~0.14x0.05 and RMS noise $sim20$ mJy beam$^{-1}$ per channel. Lower limits on the brightness temperature range from 27,000 K to 10,000,000 K showing the emission is of non-thermal origin. We also provide a list of 23 OH (1612), 14 OH (1665), 5 OH (1667) and 5 OH(1720 MHz) masers. The origin of such a large number of methanol masers is not clear. Many methanol masers appear to be associated with infrared dark clouds, though it appears unlikely that the entire population of masers trace early phase of star formation in the Galactic center.

قيم البحث

اقرأ أيضاً

We report the discovery of a widespread population of collisionally excited methanol J = 4_{-1} to 3$_0 E sources at 36.2 GHz from the inner 66x18 (160x43 pc) of the Galactic center. This spectral feature was imaged with a spectral resolution of ~16. 6 km/s taken from 41 channels of a VLA continuum survey of the Galactic center region. The revelation of 356 methanol sources, most of which are maser candidates, suggests a large abundance of methanol in the gas phase in the Galactic center region. There is also spatial and kinematic correlation between SiO (2--1) and CH3OH emission from four Galactic center clouds: the +50 and +20 km/s clouds and G0.13-0.13 and G0.25+0.01. The enhanced abundance of methanol is accounted for in terms of induced photodesorption by cosmic rays as they travel through a molecular core, collide, dissociate, ionize, and excite Lyman Werner transitions of H2. A time-dependent chemical model in which cosmic rays drive the chemistry of the gas predicts CH3OH abundance of 10^{-8} to 10^{-7} on a chemical time scale of 5x10^4 to 5x10^5 years. The average methanol abundance produced by the release of methanol from grain surfaces is consistent with the available data.
139 - Esteban D. Araya 2009
We report high sensitivity sub-arcsecond angular resolution observations of the massive star forming region DR21(OH) at 3.6, 1.3, and 0.7 cm obtained with the Very Large Array. In addition, we conducted observations of CH3OH 44 GHz masers. We detecte d more than 30 new maser components in the DR21(OH) region. Most of the masers appear to trace a sequence of bow-shocks in a bipolar outflow. The cm continuum observations reveal a cluster of radio sources; the strongest emission is found toward the molecular core MM1. The radio sources in MM1 are located about 5 north of the symmetry center of the CH3OH outflow, and therefore, they are unlikely to be associated with the outflow. Instead, the driving source of the outflow is likely located in the MM2 core. Although based on circumstantial evidence, the radio continuum from MM1 appears to trace free-free emission from shock-ionized gas in a jet. The orientation of the putative jet in MM1 is approximately parallel to the CH3OH outflow and almost perpendicular to the large scale molecular filament that connects DR21 and DR21(OH). This suggests that the (accretion) disks associated with the outflows/jets in the DR21 - DR21(OH) region have symmetry axes mostly perpendicular to the filament.
128 - X.-W. Liu , H.-B. Yuan , Z.-Y. Huo 2013
As a major component of the LAMOST Galactic surveys, the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC) will survey a significant volume of the Galactic thin/thick disks and halo in a contiguous sky area of ~ 3,400sq.deg., centered on the Galactic anti-center (|b| <= 30{deg}, 150 <= l <= 210{deg}), and obtain lambdalambda 3800--9000 low resolution (R ~ 1,800) spectra for a statistically complete sample of >= 3M stars of all colors, uniformly and randomly selected from (r, g - r) and (r, r - i) Hess diagrams obtained from a CCD imaging photometric survey of ~ 5,400sq.deg. with the Xuyi 1.04/1.20 m Schmidt Telescope, ranging from r = 14.0 to a limiting magnitude of r = 17.8 (18.5 for limited fields). The survey will deliver spectral classification, radial velocity Vr and stellar parameters (effective temperature Teff, surface gravity log g and metallicity [Fe/H]) for millions of Galactic stars. Together with Gaia which will provide accurate distances and tangential velocities for a billion stars, the LSS-GAC will yield a unique dataset to study the stellar populations, chemical composition, kinematics and structure of the disks and their interface with the halo, identify streams of debris of tidally disrupted dwarf galaxies and clusters, probe the gravitational potential and dark matter distribution, map the 3D distribution of interstellar dust extinction, search for rare objects (e.g. extremely metal-poor or hyper-velocity stars), and ultimately advance our understanding of the assemblage of the Milky Way and other galaxies and the origin of regularity and diversity of their properties. ... (abridged)
79 - H. Dong 2011
Our HST/NICMOS Pa survey of the Galactic center (GC) provides a uniform, panoramic, high-resolution map of stars and ionized diffuse gas in the central 416 arcmin^2 of the Galaxy. This survey was carried out with 144 HST orbits using two narrow-band filters at 1.87 and 1.90 micron in NICMOS Camera 3. In this paper, we describe in detail the data reduction and mosaicking procedures followed, including background level matching and astrometric corrections. We have detected ~570,000 near-IR sources and are able to quantify photometric uncertainties of the detections. The source detection limit varies across the survey field but the typical 50% completion limit is ~17th mag (Vega System) in the 1.90 micron band. A comparison with the expected stellar magnitude distribution shows that these sources are primarily Main-Sequence massive stars (>7M) and evolved lower mass stars at the distance of the GC. In particular, the observed source magnitude distribution exhibits a prominent peak, which could represent the Red Clump stars within the GC. The observed magnitude and color of these RC stars support a steep extinction curve in the near-IR toward the GC. The flux ratios of our detected sources in the two bands also allow for an adaptive and statistical estimate of extinction across the field. With the subtraction of the extinction-corrected continuum, we construct a net Pa emission map and identify a set of Pa-emitting sources, which should mostly be evolved massive stars with strong stellar winds. The majority of the identified Pa point sources are located within the three known massive GC stellar clusters. However, a significant fraction of our Pa-emitting sources are located outside the clusters and may represent a new class of `field massive stars, many of which may have formed in isolation and/or in small groups. The maps and source catalogues presented here are available electronically.
123 - Ningyu Tang , Di Li , Carl Heiles 2017
We have obtained OH spectra of four transitions in the $^2Pi_{3/2}$ ground state, at 1612, 1665, 1667, and 1720 MHz, toward 51 sightlines that were observed in the Herschel project Galactic Observations of Terahertz C+. The observations cover the lon gitude range of (32$^circ$, 64$^circ$) and (189$^circ$, 207$^circ$) in the northern Galactic plane. All of the diffuse OH emissions conform to the so-called Sum Rule of the four brightness temperatures, indicating optically thin emission condition for OH from diffuse clouds in the Galactic plane. The column densities of the HI `halos N(HI) surrounding molecular clouds increase monotonically with OH column density, N(OH), until saturating when N(HI)=1.0 x 10$^{21}$ cm$^{-2}$ and N (OH) $geq 4.5times 10^{15}$ cm$^{-2}$, indicating the presence of molecular gas that cannot be traced by HI. Such a linear correlation, albeit weak, is suggestive of HI halos contribution to the UV shielding required for molecular formation. About 18% of OH clouds have no associated CO emission (CO-dark) at a sensitivity of 0.07 K but are associated with C$^+$ emission. A weak correlation exists between C$^+$ intensity and OH column density for CO-dark molecular clouds. These results imply that OH seems to be a better tracer of molecular gas than CO in diffuse molecular regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا