ترغب بنشر مسار تعليمي؟ اضغط هنا

The occurrence of Binary Evolution Pulsators in the classical instability strip of RR Lyrae and Cepheid variables

171   0   0.0 ( 0 )
 نشر من قبل Paulina Karczmarek
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass 0.26 Msun RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as Binary Evolution Pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (loosing up to 90% of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 Msun, and the orbital period in range 10-2500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8% and 5%, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.

قيم البحث

اقرأ أيضاً

101 - G. Hajdu , M. Catelan (1 2015
Despite their importance, very few RR Lyrae (RRL) stars have been known to reside in binary systems. We report on a search for binary RRL in the OGLE-III Galactic bulge data. Our approach consists in the search for evidence of the light-travel time e ffect in so-called observed minus calculated ($O-C$) diagrams. Analysis of 1952 well-observed fundamental-mode RRL in the OGLE-III data revealed an initial sample of 29 candidates. We used the recently released OGLE-IV data to extend the baselines up to 17 years, leading to a final sample of 12 firm binary candidates. We provide $O-C$ diagrams and binary parameters for this final sample, and also discuss the properties of 8 additional candidate binaries whose parameters cannot be firmly determined at present. We also estimate that $gtrsim 4$ per cent of the RRL reside in binary systems.
We discuss time-series analyses of classical Cepheid and RR Lyrae variables in the Galaxy and the Magellanic Clouds at multiple wavelengths. We adopt the Fourier decomposition method to quantify the structural changes in the light curves of Cepheid a nd RR Lyrae variables. A quantitative comparison of Cepheid Fourier parameters suggests that the canonical mass-luminosity models that lie towards the red-edge of the instability strip show a greater offset with respect to observations for short-period Cepheids. RR Lyrae models are consistent with observations in most period bins. We use ensemble light curve analysis to predict the physical parameters of observed Cepheid and RR Lyrae variables using machine learning methods. Our preliminary results suggest that the posterior distributions of mass, luminosity, temperature and radius for Cepheids and RR Lyraes can be well-constrained for a given metal abundance, provided a smoother grid of models is adopted in various input physical parameters.
The history of the observations of RR Lyr variables started in the XIXth century, more than 120 years ago. The very long time baseline of available data combined with the short period of RR Lyrae variables offer an unique opportunity to look at their past as a treasure of valuable information. At this purpose, the amateur/professional association Groupe Europeen dObservations Stellaires (GEOS) has built a database aimed to gather all the published maxima. We could study the period changes due to stellar evolution. Most of the 123 scrutinized RRab stars does not show any significant period variation. This reflects the fact that the rapid evolution is confined in short evolutionary phases. Notwithstanding this, we could put in evidence period increases in 27 stars and decreases in 21 ones. We also used the GEOS database to study the Blazhko effect of galactic RRab stars. The closed curves representing the Blazhko effect are constructed by plotting the magnitudes at maximum vs. the O-C values. We obtained a variegate family of Blazhko potatoes. We could also reconstruct the changes in the pulsational and Blazhko periods of RR Lyr itself, resulted to be completely decoupled. Moreover, the amplitude of the Blazhko effect decreased so much to be hardly detectable by looking at the maxima collected in 2014 only. The effect seems to start again in the 2015 data.
We report 272 radial velocities for 19 RR Lyrae variables. For most of the stars we have radial velocities for the complete pulsation cycle. These data are used to determine robust center--of--mass radial velocities that have been compared to values from the literature in a search for evidence of binary systems. Center--of--mass velocities were determined for each star using Fourier Series and Template fits to the radial velocities. Our center--of--mass velocities have uncertainties from $pm0.16$ km s$^{-1}$ to $pm$2.5 km s$^{-1}$, with a mean uncertainty of $pm$0.92 km s$^{-1}$. We combined our center--of--mass velocities with values from the literature to look for deviations from the mean center--of--mass velocity of each star. Fifteen RR Lyrae show no evidence of binary motion (BK And, CI And, Z CVn, DM Cyg, BK Dra, RR Gem, XX Hya, SZ Leo, BX Leo, TT Lyn, CN Lyr, TU Per, U Tri, RV UMa, and AV Vir). In most cases this conclusion is reached due to the sporadic sampling of the center--of--mass velocities over time. Three RR Lyrae show suspicious variation in the center--of--mass velocities that may indicate binary motion but do not prove it (SS Leo, ST Leo, and AO Peg). TU UMa was observed by us near a predicted periastron passage (at 0.14 in orbital phase) but the absence of additional center--of--mass velocities near periastron make the binary detection, based on radial velocities alone, uncertain. Two stars in our sample show $Hgamma$ emission in phases 0.9--1.0: SS Leo and TU UMa.
We present results from a comparative study of light curves of Cepheid and RR Lyrae stars in the Galaxy and the Magellanic Clouds with their theoretical models generated from the stellar pulsation codes. Fourier decomposition method is used to analys e the theoretical and the observed light curves at multiple wavelengths. In case of RR Lyrae stars, the amplitude and Fourier parameters from the models are consistent with observations in most period bins except for low metal-abundances ($Z<0.004$). In case of Cepheid variables, we observe a greater offset between models and observations for both the amplitude and Fourier parameters. The theoretical amplitude parameters are typically larger than those from observations, except close to the period of $10$ days. We find that these discrepancies between models and observations can be reduced if a higher convective efficiency is adopted in the pulsation codes. Our results suggest that a quantitative comparison of light curve structure is very useful to provide constraints for the input physics to the stellar pulsation models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا