ترغب بنشر مسار تعليمي؟ اضغط هنا

Intra-wire coupling in segmented Ni/Cu nanowires deposited by electrodeposition

131   0   0.0 ( 0 )
 نشر من قبل Olivier Fruchart
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Segmented magnetic nanowires are a promising route for the development of three dimensional data storage techniques. Such devices require a control of the coercive field and the coupling mechanisms between individual magnetic elements. In our study, we investigate electrodeposited nanomagnets within host templates using vibrating sample magnetometry and observe a strong dependence between nanowire length and coercive field (25 nm to 5 $mu$m) and diameter (25 nm to 45 nm). A transition from a magnetization reversal through coherent rotation to domain wall propagation is observed at an aspect ratio of approximately 2. Our results are further reinforced via micromagnetic simulations and angle dependent hysteresis loops. The found behavior is exploited to create nanowires consisting of a fixed and a free segment in a spin-valve like structure. The wires are released from the membrane and electrically contacted, displaying a giant magnetoresistance effect that is attributed to individual switching of the coupled nanomagnets. We develop a simple analytical model to describe the observed switching phenomena and to predict stable and unstable regimes in coupled nanomagnets of certain geometries.

قيم البحث

اقرأ أيضاً

We present a detailed study of the interface morphology of an electro-deposited (ED) Ni/Cu bilayer film by using off-specular (diffuse) neutron reflectivity technique and Atomic Force Microscopy (AFM). The Ni/Cu bilayer has been electro-deposited on seed layers of Ti/Cu. These two seed layers were deposited by magnetron sputtering. The depth profile of density in the sample has been obtained from specular neutron reflectivity data. AFM image of the air-film interface shows that the surface is covered by globular islands of different sizes. The AFM height distribution of the surface clearly shows two peaks [Fig. 3] and the relief structure (islands) on the surface in the film can be treated as a quasi-two-level random rough surface structure. We have demonstrated that the detailed morphology of air-film interfaces, the quasi-two level surface structure as well as morphology of the buried interfaces can be obtained from off-specular neutron reflectivity data. We have shown from AFM and off-specular neutron reflectivity data that the morphologies of electro-deposited surface is distinctly different from that of sputter-deposited interface in this sample. To the best of our knowledge this is the first attempt to microscopically quantify the differences in morphologies of metallic interfaces deposited by two different techniques viz. electro-deposition and sputtering.
124 - Gintare Statkute 2015
GaAs nanowires were grown by metalorganic vapor phase epitaxy on evaporated metal films (Au, Au / Pd, Ag, Ni, Ga, Cu, Al, Ti). The samples were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). SEM images reveal that nanowires grow directly on the metals. TEM characterization shows crystalline nanowire (nw) structure originating from Au. Article presents state of the art about nanowire-metal interface growth and enumerates nanowire contacting methods with metals.
Phase change memories (PCM) is an emerging type of non-volatile memory that has shown a strong presence in the data-storage market. This technology has recently attracted significant research interest in the development of non-Von Neumann computing a rchitectures such as in-memory and neuromorphic computing. Research in these areas has been primarily motivated by the scalability potential of phase change materials and their compatibility with industrial nanofabrication processes. In this work, we are presenting our development of crossbar phase change memory arrays through the electrodeposition of GeSbTe (GST). We show that GST can be electrodeposited in microfabricated TiN crossbar arrays using a scalable process. Our phase switching test of the electrodeposited materials have shown that a SET/RESET resistance ratio of 2-3 orders of magnitude is achievable with a switching endurance of around 80 cycles. These results represent the first phase switching of electrodeposited GeSbTe in microfabricated crossbar arrays. Our work paves the way towards developing large memory arrays involving electrodeposited materials for passive selectors and phase switching devices. It also opens opportunities for developing a variety of different electronic devices using electrodeposited materials.
117 - H. J. Xiang , Su-Huai Wei 2008
Density functional calculations are performed to investigate the room temperature ferromagnetism in GaN:Cu nanowires (NWs). Our results indicate that two Cu dopants are most stable when they are near each other. Compared to bulk GaN:Cu, we find that magnetization and ferromagnetism in Cu doped NWs is strongly enhanced because the band width of the Cu td band is reduced due to the 1D nature of the NW. The surface passivation is shown to be crucial to sustain the ferromagnetism in GaN:Cu NWs. These findings are in good agreement with experimental observations and indicate that ferromagnetism in this type of systems can be tuned by controlling the size or shape of the host materials.
Magnetic properties of silver(II) compounds have been of interest in recent years. In covalent compounds, the main mechanism of interaction between paramagnetic sites is the superexchange via the connecting ligand. To date, little is known of magneti c interactions between Ag(II) cations and other paramagnetic centres. It is because only a few compounds bearing Ag(II) cation and other paramagnetic transition metal cation are known experimentally. Recently the high-pressure synthesis of ternary silver(II) fluorides with 3d metal cations AgMF4 (M = Co, Ni, Cu) was predicted to be feasible. Here, we investigate the magnetic properties of these compounds in their diverse polymorphic forms. Using well established computational methods we predict superexchange pathways in AgMF4, evaluate coupling constants and calculate the impact of Ag(II) presence on superexchange between the other cations. The results indicate that the low-pressure form of AgCuF4, the only composed of stacked layers as the parent AgF2, would hold mainly Ag-Ag and Cu-Cu superexchange interactions. Upon compression, or with the nickel(II) cation, the Ag-M interactions in AgMF4 intensify, which is emphasized by an increase of Ag-M superexchange coupling constants and Ag-F-M angles. All the strongest Ag-M superexchange pathways are quasi-linear, leading to the formation of antiferromagnetic chains along the crystallographic directions. The impact of Ag(II) on M-M superexchange turns out to be moderate, due to factors connected to the crystal structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا