ترغب بنشر مسار تعليمي؟ اضغط هنا

SALT spectroscopy of evolved massive stars

335   0   0.0 ( 0 )
 نشر من قبل Alexei Kniazev
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fibre-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

قيم البحث

اقرأ أيضاً

We present the results of optical spectroscopic observations of 54 candidate evolved massive stars revealed through the detection of mid-infrared nebulae of various shapes surrounding them with the {it Spitzer Space Telescope} and {it Wide-field Infr ared Survey Explorer}. These observations, carried out with the Southern African Large Telescope (SALT) in 2010-2015, led to the discovery of about two dozens emission-line stars, of which 15 stars we classify as candidate luminous blue variables (cLBVs). Spectroscopic and photometric monitoring revealed significant changes in the spectra and brightness of four newly identified cLBVs, meaning that they are new members of the class of bona fide LBVs. We present an updated list of the Galactic bona fide LBVs. Currently, this list contains eighteen stars, of which more than 70 per cent are associated with circumstellar nebulae. We also discovered a very rare [WN] star - the central star of the planetary nebula Abell 48, and a WN3 star in a close, eccentric binary system with an O6V star in the Large Magellanic Cloud - the first-ever extragalactic massive star identified via detection of a circular shell around it. Most of the remaining targets are tentatively classified as OB, A and M stars.
We present the first results from a study of TESS Sector 1 and 2 light curves for eight evolved massive stars in the LMC: six yellow supergiants (YSGs) and two luminous blue variables (LBVs), including S Doradus. We use an iterative prewhitening proc edure to characterize the short-timescale variability in all eight stars. The periodogram of one of the YSGs, HD 269953, displays multiple strong peaks at higher frequencies than its fellows. While the field surrounding HD 269953 is quite crowded, it is the brightest star in the region, and has infrared colors indicating it is dusty. We suggest HD 269953 may be in a post-red supergiant evolutionary phase. We find a signal with a period of $sim5$ days for the LBV HD 269582. The periodogram of S Doradus shows a complicated structure, with peaks below frequencies of 1.5 cycles per day. We fit the shape of the background noise of all eight light curves, and find a red noise component in all of them. However, the power law slope of the red noise and the timescale over which coherent structures arise changes from star to star. Our results highlight the potential for studying evolved massive stars with TESS.
We examine high-cadence space photometry taken by the Transiting Exoplanet Survey Satellite (TESS) of a sample of evolved massive stars (26 Wolf-Rayet stars and 8 Luminous Blue Variables or candidate LBVs). To avoid confusion problems, only stars wit hout bright Gaia neighbours and without evidence of bound companions are considered. This leads to a clean sample, whose variability properties should truly reflect the properties of the WR and LBV classes. Red noise is detected in all cases and its fitting reveals characteristics very similar to those found for OB-stars. Coherent variability is also detected for 20% of the WR sample. Most detections occur at moderately high frequency (3--14/d), hence are most probably linked to pulsational activity. This work doubles the number of WRs known to exhibit high-frequency signals.
Context: At the end of their lives AGB stars are prolific producers of dust and gas. The details of this mass-loss process are still not understood very well. Herschel PACS and SPIRE spectra offer a unique way of investigating properties of AGB stars in general and the mass-loss process in particular. Methods: The HIPE software with the latest calibration is used to process the available PACS and SPIRE spectra of 40 evolved stars. The spectra are convolved with the response curves of the PACS and SPIRE bolometers and compared to the fluxes measured in imaging data of these sources. Custom software is used to identify lines in the spectra, and to determine the central wavelengths and line intensities. Standard molecular line databases are used to associate the observed lines. Because of the limited spectral resolution of the spectrometers several known lines are typically potential counterparts to any observed line. To help identifications the relative contributions in line intensity of the potential counterpart lines are listed for three characteristic temperatures based on LTE calculations and assuming optically thin emission. Result: The following data products are released: the reduced spectra, the lines that are measured in the spectra with wavelength, intensity, potential identifications, and the continuum spectra, i.e. the full spectra with all identified lines removed. As simple examples of how this data can be used in future studies we have fitted the continuum spectra with three power laws and find that the few OH/IR stars seem to have significantly steeper slopes than the other oxygen- and carbon-rich objects in the sample. As another example we constructed rotational diagrams for CO and fitted a two-component model to derive rotational temperatures.
Massive stars shape their surrounding medium through the force of their stellar winds, which collide with the circumstellar medium. Because the characteristics of these stellar winds vary over the course of the evolution of the star, the circumstella r matter becomes a reflection of the stellar evolution and can be used to determine the characteristics of the progenitor star. In particular, whenever a fast wind phase follows a slow wind phase, the fast wind sweeps up its predecessor in a shell, which is observed as a circumstellar nebula. We make 2-D and 3-D numerical simulations of fast stellar winds sweeping up their slow predecessors to investigate whether numerical models of these shells have to be 3-D, or whether 2-D models are sufficient to reproduce the shells correctly. We focus on those situations where a fast Wolf-Rayet (WR) star wind sweeps up the slower wind emitted by its predecessor, being either a red supergiant or a luminous blue variable. As the fast WR wind expands, it creates a dense shell of swept up material that expands outward, driven by the high pressure of the shocked WR wind. These shells are subject to a fair variety of hydrodynamic-radiative instabilities. If the WR wind is expanding into the wind of a luminous blue variable phase, the instabilities will tend to form a fairly small-scale, regular filamentary lattice with thin filaments connecting knotty features. If the WR wind is sweeping up a red supergiant wind, the instabilities will form larger interconnected structures with less regularity. Our results show that 3-D models, when translated to observed morphologies, give realistic results that can be compared directly to observations. The 3-D structure of the nebula will help to distinguish different progenitor scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا