ﻻ يوجد ملخص باللغة العربية
The complex Langevin method (CLM) provides a promising way to perform the path integral with a complex action using a stochastic equation for complexified dynamical variables. It is known, however, that the method gives wrong results in some cases, while it works, for instance, in finite density QCD in the deconfinement phase or in the heavy dense limit. Here we revisit the argument for justification of the CLM and point out a subtlety in using the time-evolved observables, which play a crucial role in the argument. This subtlety requires that the probability distribution of the drift term should fall off exponentially or faster at large magnitude. We demonstrate our claim in some examples such as chiral Random Matrix Theory and show that our criterion is indeed useful in judging whether the results obtained by the CLM are trustable or not.
Recently there has been remarkable progress in solving the sign problem, which occurs in investigating statistical systems with a complex weight. The two promising methods, the complex Langevin method and the Lefschetz thimble method, share the idea
The complex Langevin method and the generalized Lefschetz-thimble method are two closely related approaches to the sign problem, which are both based on complexification of the original dynamical variables. The former can be viewed as a generalizatio
In recent years, there has been remarkable progress in theoretical justification of the complex Langevin method, which is a promising method for evading the sign problem in the path integral with a complex weight. There still remains, however, an iss
Recently there has been remarkable progress in the complex Langevin method, which aims at solving the complex action problem by complexifying the dynamical variables in the original path integral. In particular, a new technique called the gauge cooli
We study the gauge cooling technique for the complex Langevin method applied to the computation in lattice quantum chromodynamics. We propose a new solver of the minimization problem that optimizes the gauge, which does not include any parameter in e