ترغب بنشر مسار تعليمي؟ اضغط هنا

Future Gravitational Wave Detectors Based on Atom Interferometry

111   0   0.0 ( 0 )
 نشر من قبل Remi Geiger
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Remi Geiger




اسأل ChatGPT حول البحث

We present the perspective of using atom interferometry for gravitational wave (GW) detection in the mHz to about 10 Hz frequency band. We focus on light-pulse atom interferometers which have been subject to intense developments in the last 25 years. We calculate the effect of the GW on the atom interferometer and present in details the atomic gradiometer configuration which has retained more attention recently. The principle of such a detector is to use free falling atoms to measure the phase of a laser, which is modified by the GW. We highlight the potential benefits of using atom interferometry compared to optical interferometry as well as the challenges which remain for the realization of an atom interferometry based GW detector. We present some of the important noise sources which are expected in such detectors and strategies to cirucumvent them. Experimental techniques related to cold atom interferometers are briefly explained. We finally present the current progress and projects in this rapidly evolving field.



قيم البحث

اقرأ أيضاً

We describe an atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wavepackets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes. For instance, a binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to $Omega_text{GW} sim 10^{-14}$ for a two satellite space-based detector.
Future ground-based gravitational-wave detectors are slated to detect black hole and neutron star collisions from the entire stellar history of the universe. To achieve the designed detector sensitivities, frequency noise from the laser source must b e reduced below the level achieved in current Advanced LIGO detectors. This paper reviews the laser frequency noise suppression scheme in Advanced LIGO, and quantifies the noise coupling to the gravitational-wave readout. The laser frequency noise incident on the current Advanced LIGO detectors is $8 times 10^{-5}~mathrm{Hz/sqrt{Hz}}$ at $1~mathrm{kHz}$. Future detectors will require even lower incident frequency noise levels to ensure this technical noise source does not limit sensitivity. The frequency noise requirement for a gravitational wave detector with arm lengths of $40~mathrm{km}$ is estimated to be $7 times 10^{-7}~mathrm{Hz/sqrt{Hz}}$. To reach this goal a new frequency noise suppression scheme is proposed, utilizing two input mode cleaner cavities, and the limits of this scheme are explored. Using this scheme the frequency noise requirement is met, even in pessimistic noise coupling scenarios.
97 - T. Akutsu , M. Ando , K. Arai 2019
Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition process es, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, which is compatible with the interferometers having long arms like the next generation GW detectors. The features of the new ALS are that the control configuration is simpler than those of previous ones and that it is not necessary to lay optical fibers for the ALS along the kilometer-long arms of the detector. Along with simulations of its noise performance, an experimental test of the new ALS was performed utilizing a single arm cavity of KAGRA. This paper presents the first results of the test where we demonstrated that lock acquisition of the arm cavity was achieved using the new ALS and residual noise was measured to be $8.2,mathrm{Hz}$ in units of frequency, which is smaller than the linewidth of the arm cavity and thus low enough to lock the full interferometer of KAGRA in a repeatable and reliable manner.
The next generation of gravitational-wave experiments, such as Einstein Telescope, Cosmic Explorer and LISA, will test the primordial black hole scenario. We provide a forecast for the minimum testable value of the abundance of primordial black holes as a function of their masses for both the unclustered and clustered spatial distributions at formation. In particular, we show that these instruments may test abundances, relative to the dark matter, as low as $10^{-10}$.
Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earths gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gr avitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species $^{85}$Rb/$^{87}$Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry, the detection unit, the vacuum system for $10^{-11}$ mbar ultra-high vacuum generation, and the high-suppression factor magnetic shielding as well as the thermal control system. The laser system is based on a hybrid approach using fiber-based telecom components and high-power laser diode technology and includes all laser sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and switching of the laser beams is carried out on an optical bench using Zerodur bonding technology. The instrument consists of 9 units with an overall mass of 221 kg, an average power consumption of 608 W (819 W peak), and a volume of 470 liters which would well fit on a satellite to be launched with a Soyuz rocket, as system studies have shown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا