ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the properties of cluster precursors in the MALT90 survey

82   0   0.0 ( 0 )
 نشر من قبل Yanett Contreras Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the Milky Way there are thousands of stellar clusters each harboring from a hundred to a million stars. Although clusters are common, the initial conditions of cluster formation are still not well understood. To determine the processes involved in the formation and evolution of clusters it is key to determine the global properties of cluster-forming clumps in their earliest stages of evolution. Here, we present the physical properties of 1,244 clumps identified from the MALT90 survey. Using the dust temperature of the clumps as a proxy for evolution we determined how the clump properties change at different evolutionary stages. We find that less-evolved clumps exhibiting dust temperatures lower than 20 K have higher densities and are more gravitationally bound than more-evolved clumps with higher dust temperatures. We also identified a sample of clumps in a very early stage of evolution, thus potential candidates for high-mass star-forming clumps. Only one clump in our sample has physical properties consistent with a young massive cluster progenitor, reinforcing the fact that massive proto-clusters are very rare in the Galaxy.



قيم البحث

اقرأ أيضاً

The Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey aims to characterise the physical and chemical evolution of high-mass star-forming clumps. Exploiting the unique broad frequency range and on-the-fly mapping capabilities of the Australia Te lescope National Facility Mopra 22 m single-dish telescope, MALT90 has obtained 3 x 3 maps toward ~2000 dense molecular clumps identified in the ATLASGAL 870 um Galactic plane survey. The clumps were selected to host the early stages of high-mass star formation and to span the complete range in their evolutionary states (from prestellar, to protostellar, and on to HII regions and photodissociation regions). Because MALT90 mapped 16 lines simultaneously with excellent spatial (38) and spectral (0.11 km/s) resolution, the data reveal a wealth of information about the clumps morphologies, chemistry, and kinematics. In this paper we outline the survey strategy, observing mode, data reduction procedure, and highlight some early science results. All MALT90 raw and processed data products are available to the community. With its unprecedented large sample of clumps, MALT90 is the largest survey of its type ever conducted and an excellent resource for identifying interesting candidates for high resolution studies with ALMA.
We describe the selection of galaxies targeted in eight low redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; $0.029 < z < 0.058$) as part of the Sydney-AAO Multi-Object integral field Spectrograph Galaxy Survey (SAMI-GS ). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterise the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21,257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness ($sim 94%$) for $r_{rm petro} leq 19.4$ and clustercentric distances $R< 2rm{R}_{200}$. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, $rm{R}_{200}$, virial and caustic masses, as well as cluster structure. The clusters have virial masses $14.25 leq {rm log }({rm M}_{200}/rm{M}_{odot}) leq 15.19$. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and PSF-matched photometry are derived from SDSS and VST/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have $R< rm{R}_{200}$, velocities $|v_{rm pec}| < 3.5sigma_{200}$ and stellar masses $9.5 leq {rm log(M}^*_{approx}/rm{M}_{odot}) leq 12$. Finally, we give an update on the SAMI-GS progress for the cluster regions.
We describe a pilot survey conducted with the Mopra 22-m radio telescope in preparation for the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90). We identified 182 candidate dense molecular clumps using six different selection criteria and mapped each source simultaneously in 16 different lines near 90 GHz. We present a summary of the data and describe how the results of the pilot survey shaped the design of the larger MALT90 survey. We motivate our selection of target sources for the main survey based on the pilot detection rates and demonstrate the value of mapping in multiple lines simultaneously at high spectral resolution.
ALMA will revolutionize our understanding of star formation within our galaxy, but before we can use ALMA we need to know where to look. The Millimeter Astronomy Legacy Team 90 GHz (MALT90) Survey is a large international project to map the molecular line emission of over 2,000 dense clumps in the Galactic plane. MALT90 serves as a pathfinder for ALMA, providing a large public database of dense molecular clumps associated with high-mass star formation. In this proceedings, we describe the survey parameters and share early science highlights from the survey, including (1) a comparison between galactic and extragalactic star formation relations, (2) chemical trends in MALT90 clumps, (3) the distribution of high-mass star formation in the Milky Way, and (4) a discussion of the Brick, the target of successful ALMA Cycle 0 and Cycle 1 proposals.
The chemical changes of high-mass star-forming regions provide a potential method for classifying their evolutionary stages and, ultimately, ages. In this study, we search for correlations between molecular abundances and the evolutionary stages of d ense molecular clumps associated with high-mass star formation. We use the molecular line maps from Year 1 of the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey. The survey mapped several hundred individual star-forming clumps chosen from the ATLASGAL survey to span the complete range of evolution, from prestellar to protostellar to H II regions. The evolutionary stage of each clump is classified using the Spitzer GLIMPSE/MIPSGAL mid-IR surveys. Where possible, we determine the dust temperatures and H2 column densities for each clump from Herschel Hi-GAL continuum data. From MALT90 data, we measure the integrated intensities of the N2H+, HCO+, HCN and HNC (1-0) lines, and derive the column densities and abundances of N2H+ and HCO+. The Herschel dust temperatures increase as a function of the IR-based Spitzer evolutionary classification scheme, with the youngest clumps being the coldest, which gives confidence that this classification method provides a reliable way to assign evolutionary stages to clumps. Both N2H+ and HCO+ abundances increase as a function of evolutionary stage, whereas the N2H+ (1-0) to HCO+ (1-0) integrated intensity ratios show no discernable trend. The HCN (1-0) to HNC(1-0) integrated intensity ratios show marginal evidence of an increase as the clumps evolve.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا