ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic zero modes of Dirac fermions and competing singlet phases of antiferromagnetic order

68   0   0.0 ( 0 )
 نشر من قبل Pallab Goswami
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In quantum spin systems, singlet phases often develop in the vicinity of an antiferromagnetic order. Typical settings for such problems arise when itinerant fermions are also present. In this work, we develop a theoretical framework for addressing such competing orders in an itinerant system, described by Dirac fermions strongly coupled to an O(3) nonlinear sigma model. We focus on two spatial dimensions, where upon disordering the antiferromagnetic order by quantum fluctuations the singular tunneling events also known as (anti)hedgehogs can nucleate competing singlet orders in the paramagnetic phase. In the presence of an isolated hedgehog configuration of the nonlinear sigma model field, we show that the fermion determinant vanishes as the dynamic Euclidean Dirac operator supports fermion zero modes of definite chirality. This provides a topological mechanism for suppressing the tunneling events. Using the methodology of quantum chromodynamics, we evaluate the fermion determinant in the close proximity of magnetic quantum phase transition, when the antiferromagnetic order parameter field can be described by a dilute gas of hedgehogs and antihedgehogs. We show how the precise nature of emergent singlet order is determined by the overlap between dynamic fermion zero modes of opposite chirality, localized on the hedgehogs and antihedgehogs. For a Kondo-Heisenberg model on the honeycomb lattice, we demonstrate the competition between spin Peierls order and Kondo singlet formation, thereby elucidating its global phase diagram. We also discuss other physical problems that can be addressed within this general framework.



قيم البحث

اقرأ أيضاً

We consider magnon excitations in the spin-glass phase of geometrically frustrated antiferromagnets with weak exchange disorder, focussing on the nearest-neighbour pyrochlore-lattice Heisenberg model at large spin. The low-energy degrees of freedom i n this system are represented by three copies of a U(1) emergent gauge field, related by global spin-rotation symmetry. We show that the Goldstone modes associated with spin-glass order are excitations of these gauge fields, and that the standard theory of Goldstone modes in Heisenberg spin glasses (due to Halperin and Saslow) must be modified in this setting.
Here we study the phase diagram of the Aubry-Andre-Harper model in the presence of strong interactions as the strength of the quasiperiodic potential is varied. Previous work has established the existence of many-body localized phase at large potenti al strength; here, we find a rich phase diagram in the delocalized regime characterized by spin transport and unusual correlations. We calculate the non-equilibrium steady states of a boundary-driven strongly interacting Aubry-Andre-Harper model by employing the time-evolving block decimation algorithm on matrix product density operators. From these steady states, we extract spin transport as a function of system size and quasiperiodic potential strength. This data shows spin transport going from superdiffusive to subdiffusive well before the localization transition; comparing to previous results, we also find that the transport transition is distinct from a transition observed in the speed of operator growth in the model. We also investigate the correlation structure of the steady state and find an unusual oscillation pattern for intermediate values of the potential strength. The unusual spin transport and quantum correlation structure suggest multiple dynamical phases between the much-studied thermal and many-body-localized phases.
Quasicrystals lack translational symmetry, but can still exhibit long-ranged order, promoting them to candidates for unconventional physics beyond the paradigm of crystals. Here, we apply a real-space functional renormalization group approach to th e prototypical quasicrystalline Penrose tiling Hubbard model treating} competing electronic instabilities in an unbiased, beyond-mean-field fashion. {color{red} Our work reveals a delicate interplay between charge and spin degrees of freedom in quasicrystals}. Depending on the range of interactions and hopping amplitudes, we unveil a rich phase diagram including antiferromagnetic orderings, charge density waves and subleading, superconducting pairing tendencies. For certain parameter regimes we find a competition of phases, which is also common in crystals, but additionally encounter phases coexisting in a spatially separated fashion and ordering tendencies which mutually collaborate to enhance their strength. We therefore establish that quasicrystalline structures open up a route towards this rich ordering behavior uncommon to crystals and that an unbiased, beyond-mean-field approach is essential to describe this physics of quasicrystals correctly.
We study properties of thermal transport and quantum many-body chaos in a lattice model with $Ntoinfty$ oscillators per site, coupled by strong nonlinear terms. We first consider a model with only optical phonons. We find that the thermal diffusivity $D_{rm th}$ and chaos diffusivity $D_L$ (defined as $D_L = v_B^2/ lambda_L$, where $v_B$ and $lambda_L$ are the butterfly velocity and the scrambling rate, respectively) satisfy $D_{rm th} approx gamma D_L$ with $gammagtrsim 1$. At intermediate temperatures, the model exhibits a ``quantum phonon fluid regime, where both diffusivities satisfy $D^{-1} propto T$, and the thermal relaxation time and inverse scrambling rate are of the order the of Planckian timescale $hbar/k_B T$. We then introduce acoustic phonons to the model and study their effect on transport and chaos. The long-wavelength acoustic modes remain long-lived even when the system is strongly coupled, due to Goldstones theorem. As a result, for $d=1,2$, we find that $D_{rm th}/D_Lto infty$, while for $d=3$, $D_{rm th}$ and $D_{L}$ remain comparable.
We study the effects of bond and site disorder in the classical $J_{1}$-$J_{2}$ Heisenberg model on a square lattice in the order-by-disorder frustrated regime $2J_{2}>left|J_{1}right|$. Combining symmetry arguments, numerical energy minimization and large scale Monte Carlo simulations, we establish that the finite temperature Ising-like transition of the clean system is destroyed in the presence of any finite concentration of impurities. We explain this finding via a random-field mechanism which generically emerges in systems where disorder locally breaks the same real-space symmetry spontaneously globally broken by the associated order parameter. We also determine that the phase replacing the clean one is a paramagnet polarized in the nematic glass order with non-trivial magnetic response. This is because disorder also induces non-collinear spin-vortex-crystal order and produces a conjugated transverse dipolar random field. As a result of these many competing effects, the associated magnetic susceptibilities are non-monotonic functions of the temperature. As a further application of our methods, we show the generation of random axes in other frustrated magnets with broken SU(2) symmetry. We also discuss the generality of our findings and their relevance to experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا