ﻻ يوجد ملخص باللغة العربية
The post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The recent post-AGB evolutionary sequences computed by Miller Bertolami (2016) are at least three to ten times faster than those previously published by Vassiliadis & Wood (1994) and Bloecker (1995) which have been used in a large number of studies. This is true for the whole mass and metallicity range. The new models are also $sim$0.1-0.3 dex brighter than the previous models with similar remnant masses. In this short article we comment on the main reasons behind these differences, and discuss possible implications for other studies of post-AGB stars or planetary nebulae.
The evolution of central stars of planetary nebulae was so far documented in just a few cases. However, spectra collected a few decades ago may provide a good reference for studying the evolution of central stars using the emission line fluxes of the
Fast line-driven stellar winds play an important role in the evolution of planetary nebulae. We provide global hot star wind models of central stars of planetary nebulae. The models predict wind structure including the mass-loss rates, terminal veloc
While most of the low-mass stars stay hydrogen-rich on their surface throughout their evolution, a considerable fraction of white dwarfs as well as central stars of planetary nebulae have a hydrogen-deficient surface composition. The majority of thes
Context. There are more than 3000 confirmed and probable known Galactic planetary nebulae, but central star spectroscopic information is available for only 13% of them. Aims. We undertook a spectroscopic survey of central stars of PNe to identify the
The age distribution of the central stars of planetary nebulae (CSPN) is estimated using two methods based on their kinematic properties. First, the expected rotation velocities of the nebulae at their Galactocentric distances are compared with the p