ﻻ يوجد ملخص باللغة العربية
The Type~Ia supernova (SN~Ia) 2016coj in NGC 4125 (redshift $z=0.004523$) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before $B$-band maximum). Our first detection (pre-discovery) is merely $0.6pm0.5$ day after the FFLT, making SN 2016coj one of the earliest known detections of a SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but with a high velocity of ion{Si}{2} $lambda$6355 ($sim 12,600$,kms around peak brightness). The ion{Si}{2} $lambda$6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity ($M_B approx -18.9 pm 0.2$ mag), and it reaches a $B$-band maximum about16.0~d after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na~I~D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the ion{Si}{2} line polarization is quite strong ($sim 0.9% pm 0.1%$) at peak brightness.
On 2012 May 17.2 UT, only 1.5 +/- 0.2 d after explosion, we discovered SN 2012cg, a Type Ia supernova (SN Ia) in NGC 4424 (d ~ 15 Mpc). As a result of the newly modified strategy employed by the Lick Observatory SN Search, a sequence of filtered imag
We present BVRI and unfiltered light curves of 93 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search (LOSS) follow-up program conducted between 2005 and 2018. Our sample consists of 78 spectroscopically normal SNe Ia, with the rem
We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The firs
We have used two methods to search for surviving companions of Type Ia supernova progenitors in three Balmer-dominated supernova remnants (SNRs) in the Large Magellanic Cloud: 0519-69.0, 0505-67.9 (DEM L71), and 0548-70.4. In the first method, we use
We present optical photometric and spectroscopic observations of the faint-and-fast evolving type Iax SN 2019gsc, extending from the time of g-band maximum until about fifty days post maximum, when the object faded to an apparent r-band magnitude m_r