ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj

66   0   0.0 ( 0 )
 نشر من قبل Zheng Weikang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Type~Ia supernova (SN~Ia) 2016coj in NGC 4125 (redshift $z=0.004523$) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before $B$-band maximum). Our first detection (pre-discovery) is merely $0.6pm0.5$ day after the FFLT, making SN 2016coj one of the earliest known detections of a SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but with a high velocity of ion{Si}{2} $lambda$6355 ($sim 12,600$,kms around peak brightness). The ion{Si}{2} $lambda$6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity ($M_B approx -18.9 pm 0.2$ mag), and it reaches a $B$-band maximum about16.0~d after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na~I~D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the ion{Si}{2} line polarization is quite strong ($sim 0.9% pm 0.1%$) at peak brightness.



قيم البحث

اقرأ أيضاً

On 2012 May 17.2 UT, only 1.5 +/- 0.2 d after explosion, we discovered SN 2012cg, a Type Ia supernova (SN Ia) in NGC 4424 (d ~ 15 Mpc). As a result of the newly modified strategy employed by the Lick Observatory SN Search, a sequence of filtered imag es was obtained starting 161 s after discovery. Utilizing recent models describing the interaction of SN ejecta with a companion star, we rule out a ~1 M_Sun companion for half of all viewing angles and a red-giant companion for nearly all orientations. SN 2012cg reached a B-band maximum of 12.09 +/- 0.02 mag on 2012 June 2.0 and took ~17.3 d from explosion to reach this, typical for SNe Ia. Our pre-maximum brightness photometry shows a narrower-than-average B-band light curve for SN 2012cg, though slightly overluminous at maximum brightness and with normal color evolution (including some of the earliest SN Ia filtered photometry ever obtained). Spectral fits to SN 2012cg reveal ions typically found in SNe Ia at early times, with expansion velocities >14,000 km/s at 2.5 d past explosion. Absorption from C II is detected early, as well as high-velocity components of both Si II 6355 Ang. and Ca II. Our last spectrum (13.5 d past explosion) resembles that of the somewhat peculiar SN Ia 1999aa. This suggests that SN 2012cg will have a slower-than-average declining light curve, which may be surprising given the faster-than-average rising light curve.
We present BVRI and unfiltered light curves of 93 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search (LOSS) follow-up program conducted between 2005 and 2018. Our sample consists of 78 spectroscopically normal SNe Ia, with the rem ainder divided between distinct subclasses (three SN 1991bg-like, three SN 1991T-like, four SNe Iax, two peculiar, and three super-Chandrasekhar events), and has a median redshift of 0.0192. The SNe in our sample have a median coverage of 16 photometric epochs at a cadence of 5.4 days, and the median first observed epoch is ~4.6 days before maximum B-band light. We describe how the SNe in our sample are discovered, observed, and processed, and we compare the results from our newly developed automated photometry pipeline to those from the previous processing pipeline used by LOSS. After investigating potential biases, we derive a final systematic uncertainty of 0.03 mag in BVRI for our dataset. We perform an analysis of our light curves with particular focus on using template fitting to measure the parameters that are useful in standardising SNe Ia as distance indicators. All of the data are available to the community, and we encourage future studies to incorporate our light curves in their analyses.
We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The firs t NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C I {lambda}1.0693 {mu}m line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely-cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with {Delta}m15(B) = 1.79 $pm$ 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a transitional event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest composition and density of the inner core similar to that of 91bg-like events, and a deep reaching carbon burning layer not observed in slower declining SNe Ia. There is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II {lambda}0.6355 {mu}m line, implying a long dark phase of ~ 4 days.
We have used two methods to search for surviving companions of Type Ia supernova progenitors in three Balmer-dominated supernova remnants (SNRs) in the Large Magellanic Cloud: 0519-69.0, 0505-67.9 (DEM L71), and 0548-70.4. In the first method, we use the Hubble Space Telescope photometric measurements of stars to construct color-magnitude diagrams (CMDs), and compare positions of stars in the CMDs with those expected from theoretical post-impact evolution of surviving main sequence or helium star companions. No obvious candidates of surviving companion are identified in this photometric search. Future models for surviving red giant companions or with different explosion mechanisms are needed for thorough comparisons with these observations in order to make more definitive conclusions. In the second method, we use Multi-Unit Spectroscopic Explorer (MUSE) observations of 0519-69.0 and DEM L71 to carry out spectroscopic analyses of stars in order to use large peculiar radial velocities as diagnostics of surviving companions. We find a star in 0519-69.0 and a star in DEM L71 moving at radial velocities of 182 $pm$ 0 km s$^{-1}$ and 213 $pm$ 0 km s$^{-1}$, more than 2.5$sigma$ from the mean radial velocity of the underlying stellar population, 264 km s$^{-1}$ and 270 km s$^{-1}$, respectively. These stars need higher-quality spectra to investigate their abundances and rotation velocities to determine whether they are indeed surviving companions of the SN progenitors.
We present optical photometric and spectroscopic observations of the faint-and-fast evolving type Iax SN 2019gsc, extending from the time of g-band maximum until about fifty days post maximum, when the object faded to an apparent r-band magnitude m_r = 22.48+/-0.11 mag. SN 2019gsc reached a peak luminosity of only M_g = -13.58 +/- 0.15 mag, and is characterised with a post-maximum decline rate Delta(m_15)_g = 1.08 +/- 0.14 mag. These light curve parameters are comparable to those measured for SN 2008ha of M_g = -13.89 +/- 0.14 mag at peak and Delta(m_15)_g = 1.80 +/- 0.03 mag. The spectral features of SN 2019gsc also resemble those of SN 2008ha at similar phases. This includes both the extremely low ejecta velocity at maximum, about 3,000 km/s, and at late-time (phase +54 d) strong forbidden iron and cobalt lines as well as both forbidden and permitted calcium features. Furthermore, akin to SN 2008ha, the bolometric light curve of SN 2019gsc is consistent with the production of 0.003 +/- 0.001 Msol of nickel. The explosion parameters, M_ej = 0.13 Msol and E_k = 12 x 10E48 erg, are also similar to those inferred for SN 2008ha. We estimate a sub-solar oxygen abundance for the host galaxy of SN 2019gsc, (12 + log10(O/H) = 8.10 +/- 0.18 dex), consistent with the equally metal-poor environment of SN 2008ha. Altogether, our dataset of SN 2019gsc indicates that this is a member of a small but growing group of extreme SN Iax that includes SN 2008ha and SN 2010ae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا