ﻻ يوجد ملخص باللغة العربية
Intending to solve the decade old problem of solar opacity, we report substantial photoabsorption uncertainty due to the effect of ion-ion correlations. By performing detailed opacity calculations of the solar mixture, we find that taking into account the ionic structure changes the Rosseland opacity near the convection zone by about 10%. We also report about 15% difference in the Rosseland opacity for iron, which was recently measured at the Sandia Z facility, where the temperature reached that prevailing in the convection zone boundary while the density is 2.5 times lower. Finally, we propose a method to measure opacities at solar temperatures and densities that were never reached in the past via laboratory radiation flow experiments, by using plastic foams doped with permilles of dominant photon absorbers in the Sun. The method is advantageous for an experimental study of solar opacities that may lead to a resolution of the solar problem.
We compute the change in the Lorentz force integrated over the outer solar atmosphere implied by observed changes in vector magnetograms that occur during large, eruptive solar flares. This force perturbation should be balanced by an equal and opposi
The most powerful explosions on the Sun [...] drive the most severe space-weather storms. Proxy records of flare energies based on SEPs in principle may offer the longest time base to study infrequent large events. We conclude that one suggested prox
The Standard Solar Model (SSM) is no more sufficient to interpret all the observations of the radiative zone obtained with the SoHO satellite. We recall our present knowledge of this internal region and compare the recent results to models beyond the
Magnetic fields on the surface of the Sun and stars in general imprint or modify the polarization state of the electromagnetic radiation that is leaving from the star. The inference of solar/stellar magnetic fields is performed by detecting, studying
Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of plan