ﻻ يوجد ملخص باللغة العربية
Widespread adoption of indoor positioning systems based on WiFi fingerprinting is at present hindered by the large efforts required for measurements collection during the offline phase. Two approaches were recently proposed to address such issue: crowdsourcing and RSS radiomap prediction, based on either interpolation or propagation channel model fitting from a small set of measurements. RSS prediction promises better positioning accuracy when compared to crowdsourcing, but no systematic analysis of the impact of system parameters on positioning accuracy is available. This paper fills this gap by introducing ViFi, an indoor positioning system that relies on RSS prediction based on Multi-Wall Multi-Floor (MWMF) propagation model to generate a discrete RSS radiomap (virtual fingerprints). Extensive experimental results, obtained in multiple independent testbeds, show that ViFi outperforms virtual fingerprinting systems adopting simpler propagation models in terms of accuracy, and allows a sevenfold reduction in the number of measurements to be collected, while achieving the same accuracy of a traditional fingerprinting system deployed in the same environment. Finally, a set of guidelines for the implementation of ViFi in a generic environment, that saves the effort of collecting additional measurements for system testing and fine tuning, is proposed.
We study the problem of indoor localization using commodity WiFi channel state information (CSI) measurements. The accuracy of methods developed to address this problem is limited by the overall bandwidth used by the WiFi device as well as various ty
We introduce WiCluster, a new machine learning (ML) approach for passive indoor positioning using radio frequency (RF) channel state information (CSI). WiCluster can predict both a zone-level position and a precise 2D or 3D position, without using an
This paper presents an approach for visible light communication-based indoor positioning using compressed sensing. We consider a large number of light emitting diodes (LEDs) simultaneously transmitting their positional information and a user device e
Recently, round-trip time (RTT) measured by a fine-timing measurement protocol has received great attention in the area of WiFi positioning. It provides an acceptable ranging accuracy in favorable environments when a line-of-sight (LOS) path exists.
The accuracy of smartphone-based positioning methods using WiFi usually suffers from ranging errors caused by non-line-of-sight (NLOS) conditions. Previous research usually exploits several statistical features from a long time series (hundreds of sa