ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlocal energy density functionals for pairing and beyond-mean-field calculations

94   0   0.0 ( 0 )
 نشر من قبل Jacek Dobaczewski
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose to use two-body regularized finite-range pseudopotential to generate nuclear energy density functional (EDF) in both particle-hole and particle-particle channels, which makes it free from self-interaction and self-pairing, and also free from singularities when used beyond mean field. We derive a sequence of pseudopotentials regularized up to next-to-leading order (NLO) and next-to-next-to-leading order (N2LO), which fairly well describe infinite-nuclear-matter properties and finite open-shell paired and/or deformed nuclei. Since pure two-body pseudopotentials cannot generate sufficiently large effective mass, the obtained solutions constitute a preliminary step towards future implementations, which will include, e.g., EDF terms generated by three-body pseudopotentials.

قيم البحث

اقرأ أيضاً

We take an additional step towards the optimization of the novel finite-range pseudopotential at constrained Hartree-Fock-Bogolyubov level and implement an optimization procedure within an axial code using harmonic oscillator basis. We perform the op timization using three different numbers of the harmonic oscillator shells. We apply the new parameterizations in the O-Kr part of the nuclear chart and isotopic chain of Sn, and we compare the results with experimental values and those given by a parameterization obtained using a spherical code.
106 - Marcella Grasso 2018
I present a review on non relativistic effective energy--density functionals (EDFs). An introductory part is dedicated to traditional phenomenological functionals employed for mean--field--type applications and to several extensions and implementatio ns that have been suggested over the years to generalize such functionals, up to the most recent ideas. The heart of this review is then focused on density functionals designed for beyond--mean--field models. Examples of these studies are discussed. Starting from these investigations, some illustrations of {it{ab--initio}}--based or {it{ab--initio}}--inspired functionals are provided. Constructing functionals by building bridges with {it{ab--initio}} models represents an extremely challenging and timely objective. This will eventually reduce/eliminate the empirical character of EDFs and link them with the underlying theory of QCD. Conclusions are presented in the last part of the review.
We introduce a finite-range pseudopotential built as an expansion in derivatives up to next-to-next-to-next-to-leading order (N$^3$LO) and we calculate the corresponding nonlocal energy density functional (EDF). The coupling constants of the nonlocal EDF, for both finite nuclei and infinite nuclear matter, are expressed through the parameters of the pseudopotential. All central, spin-orbit, and tensor terms of the pseudopotential are derived both in the spherical-tensor and Cartesian representation. At next-to-leading order (NLO), we also derive relations between the nonlocal EDF expressed in the spherical-tensor and Cartesian formalism. Finally, a simplified version of the finite-range pseudopotential is considered, which generates the EDF identical to that generated by a local potential.
133 - B. Bally , B. Avez , M. Bender 2014
Beyond mean-field methods are very successful tools for the description of large-amplitude collective motion for even-even atomic nuclei. The state-of-the-art framework of these methods consists in a Generator Coordinate Method based on angular-momen tum and particle-number projected triaxially deformed Hatree-Fock-Bogoliubov (HFB) states. The extension of this scheme to odd-mass nuclei is a long-standing challenge. We present for the first time such an extension, where the Generator Coordinate space is built from self-consistently blocked one-quasiparticle HFB states. One of the key points for this success is that the same Skyrme interaction is used for the mean-field and the pairing channels, thus avoiding problems related to the violation of the Pauli principle. An application to 25Mg illustrates the power of our method, as agreement with experiment is obtained for the spectrum, electromagnetic moments, and transition strengths, for both positive and negative parity states and without the necessity for effective charges or effective moments. Although the effective interaction still requires improvement, our study opens the way to systematically describe odd-A nuclei throughout the nuclear chart.
We have performed calculations based on the Skyrme energy density functional (EDF) that includes arbitrary mixing between protons and neutrons. In this framework, single-particle states are generalized as mixtures of proton and neutron components. Th e model assumes that the Skyrme EDF is invariant under the rotation in isospin space and the Coulomb force is the only source of the isospin symmetry breaking. To control the isospin of the system, we employ the isocranking method, which is analogous to the standard cranking approach used for describing high-spin states. Here, we present results of the isocranking calculations performed for the isobaric analog states in $A = 40$ and $A = 54$ nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا