ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar progenitors of black holes: insights from optical and infrared observations

100   0   0.0 ( 0 )
 نشر من قبل Felix Mirabel
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I.F. Mirabel




اسأل ChatGPT حول البحث

Here are reviewed the insights from observations at optical and infrared wavelengths for low mass limits above which stars do not seem to end as luminous supernovae. These insights are: (1) the absence in archived images of nearby galaxies of stellar progenitors of core-collapse supernovae above 16-18 solar masses, (2) the identification of luminous-massive stars that quietly disappear without optically bright supernovae, (3) the absence in the nebular spectra of supernovae of type II-P of the nucleosynthetic products expected from progenitors above 20 solar masses, (4) the absence in color magnitude diagrams of stars in the environment of historic core-collapse supernovae of stars with >20 solar masses. From the results in these different areas of observational astrophysics, and the recently confirmed dependence of black hole formation on metallicity and redshift of progenitors, it is concluded that a large fraction of massive stellar binaries in the universe end as binary black holes.



قيم البحث

اقرأ أيضاً

137 - J. M. Miller 2009
If a black hole has a low spin value, it must double its mass to reach a high spin parameter. Although this is easily accomplished through mergers or accretion in the case of supermassive black holes in galactic centers, it is impossible for stellar- mass black holes in X-ray binaries. Thus, the spin distribution of stellar-mass black holes is almost pristine, largely reflective of the angular momentum imparted at the time of their creation. This fact can help provide insights on two fundamental questions: What is the nature of the central engine in supernovae and gamma-ray bursts? and What was the spin distribution of the first black holes in the universe?
148 - D. M. Russell 2010
A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black holes residing within galaxies like our own, it has taken recent advances to arrive at this conclusion. Here, a review is given of the evidence that supports the existence of jets from accreting stellar-mass black holes, from observations made at optical and infrared wavelengths. In particular it is found that on occasion, jets can dominate the emission of these systems at these wavelengths. In addition, the interactions between the jets and the surrounding matter produce optical and infrared emission on large scales via thermal and non-thermal processes. The evidence, implications and applications in the context of jet physics are discussed. It is shown that many properties of the jets can be constrained from these studies, including the total kinetic power they contain. The main conclusion is that like the supermassive black holes, the jet kinetic power of accreting stellar-mass black holes is sometimes comparable to their bolometric radiative luminosity. Future studies can test ubiquities in jet properties between objects, and attempt to unify the properties of jets from all observable accreting black holes, i.e. of all masses.
The spins of stellar-mass black holes (BHs) and the power outputs of their jets are measurable quantities. Unfortunately, the currently employed methods do not agree and the results are controversial. Two major issues concern the measurements of BH s pin and beam (jet) power. The former issue can be resolved by future observations. But the latter issue can be resolved now, if we pay attention to what is expected from theoretical considerations. The question of whether a correlation has been found between the power outputs of few objects and the spins of their BHs is moot because BH beam power does not scale with the square of the spin of the BH. We show that the theoretical BH beam power is a strongly nonlinear function of spin that cannot be approximated by a quadratic relation, as is generally stated when the influence of the magnetic field is not accounted for in the cite{bla77} model. The BH beam power of ballistic jets should scale a lot more steeply with BH spin irrespective of the magnetic field assumed to thread the horizon and the spin range considered. This behavior may already be visible in the analyses of radio observations by cite{nar12} and cite{rus13}. In agreement with previous studies, we also find that the power output that originates in the inner regions of the surrounding accretion disks is higher than that from the BHs and it cannot be ignored in investigations of continuous compact jets from these systems.
Despite their factor of ~10^8 difference in black hole mass, several lines of evidence suggest possible similarities between black hole accretion flows in active galactic nuclei (AGN) and Galactic X-ray binaries. However, it is still unclear whether the geometry of the disk-corona system in X-ray binaries directly scale up to AGN, and whether this analogy still holds in different accretion states. We test this AGN/X-ray binary analogy, by comparing the observed correlations between the UV-to-X-ray spectral index (alpha_OX) and Eddington ratio in AGN to those predicted from observations of X-ray binary outbursts. This approach probes the geometry of their disk-corona systems as they transition between different accretion states. We use new Chandra X-ray and ground-based rest-UV observations of faded changing-look quasars to extend this comparison to lower Eddington ratios of <10^-2, where observations of X-ray binaries predict a softening of alpha_OX in AGN. We find that the observed correlations between alpha_OX and Eddington ratio of AGN displays a remarkable similarity to accretion state transitions in prototypical X-ray binary outbursts, including an inversion of this correlation at a critical Eddington ratio of ~10^-2. Our results suggest that the structures of black hole accretion flows directly scale across a factor of ~10^8 in black hole mass and across different accretion states, enabling us to apply theoretical models of X-ray binaries to explain AGN phenomenology.
The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of heavy stellar-mass BHs with masses >25 Msun. Initial modelling of the system by Abbott e t al. (2016a) supposes that the formation of black holes with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z < 0.25-0.5 Zsun) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass loss and rotation of massive stars, independent of environmental metallicity (ud-Doula & Owocki 2002; ud-Doula et al. 2008). In this paper we explore the hypothesis that some heavy BHs, with masses >25 Msun such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar metallicity evolutionary models for initial ZAMS masses from 40-80 Msun that include, for the first time, the quenching of the mass loss due to a realistic dipolar surface magnetic field. The new models predict TAMS masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 Msun star during its main sequence evolution by 20 Msun. This corresponds approximately to the mass loss reduction expected from an environment with metallicity Z = 1/30 Zsun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا