ﻻ يوجد ملخص باللغة العربية
We present a uniform analysis of the atmospheric escape rate of Neptune-like planets with estimated radius and mass (restricted to $M_{rm p}<30,M_{oplus}$). For each planet we compute the restricted Jeans escape parameter, $Lambda$, for a hydrogen atom evaluated at the planetary mass, radius, and equilibrium temperature. Values of $Lambdalesssim20$ suggest extremely high mass-loss rates. We identify 27 planets (out of 167) that are simultaneously consistent with hydrogen-dominated atmospheres and are expected to exhibit extreme mass-loss rates. We further estimate the mass-loss rates ($L_{rm hy}$) of these planets with tailored atmospheric hydrodynamic models. We compare $L_{rm hy}$ to the energy-limited (maximum-possible high-energy driven) mass-loss rates. We confirm that 25 planets (15% of the sample) exhibit extremely high mass-loss rates ($L_{rm hy}>0.1,M_{oplus}{rm Gyr}^{-1}$), well in excess of the energy-limited mass-loss rates. This constitutes a contradiction, since the hydrogen envelopes cannot be retained given the high mass-loss rates. We hypothesize that these planets are not truly under such high mass-loss rates. Instead, either hydrodynamic models overestimate the mass-loss rates, transit-timing-variation measurements underestimate the planetary masses, optical transit observations overestimate the planetary radii (due to high-altitude clouds), or Neptunes have consistently higher albedos than Jupiter planets. We conclude that at least one of these established estimations/techniques is consistently producing biased values for Neptune planets. Such an important fraction of exoplanets with misinterpreted parameters can significantly bias our view of populations studies, like the observed mass--radius distribution of exoplanets for example.
HATS-8b is a low density transiting super-Neptune discovered as part of the HATSouth project. The planet orbits its solar-like G dwarf host (V=14.03 $pm$ 0.10 and T$_{eff}$ =5679 $pm$ 50 K) with a period of 3.5839 d. HATS-8b is the third lowest mass
Earth-Like is an interactive website and twitter bot that allows users to explore changes in the average global surface temperature of an Earth-like planet due to variations in the surface oceans and emerged land coverage, rate of volcanism (degassin
We report the discovery of HAT-P-26b, a transiting extrasolar planet orbiting the moderately bright V=11.744 K1 dwarf star GSC 0320-01027, with a period P = 4.234516 +- 0.000015 d, transit epoch Tc = 2455304.65122 +- 0.00035 (BJD), and transit durati
We investigate possible pathways for the formation of the low density Neptune-mass planet HAT-P-26b. We use two formation different models based on pebbles and planetesimals accretion, and includes gas accretion, disk migration and simple photoevapor
About one out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultra-short-period planet (Sanchis-ojeda et al. 2014; Winn et al. 2018). All of the previously known ultra-short-period planets are either hot Jupiters,