ﻻ يوجد ملخص باللغة العربية
We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model we use a cool Y dwarf atmosphere, such as $mathrm{WISE~J}085510.83-0714442.5$ whose $4.5-5.2$ micron spectrum shows absorption features consistent with water vapour and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach we infer that there are of order $10^9$ cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within ten parsecs from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.
Several concepts have been brought forward to determine where terrestrial planets are likely to remain habitable in multi-stellar environments. Isophote-based habitable zones, for instance, rely on insolation geometry to predict habitability, whereas
Habitable zones are regions around stars where large bodies of liquid water can be sustained on a planet or satellite. As many stars form in binary systems with non-zero eccentricity, the habitable zones around the component stars of the binary can o
Observations of exoplanets and protoplanetary disks show that binary stellar systems can host planets in stable orbits. Given the high binary fraction among stars, the contribution of binary systems to Galactic habitability should be quantified. Ther
Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ ar
With continued improvement in telescope sensitivity and observational techniques, the search for rocky planets in stellar habitable zones is entering an exciting era. With so many exoplanetary systems available for follow-up observations to find pote