ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowledge Graph Representation with Jointly Structural and Textual Encoding

109   0   0.0 ( 0 )
 نشر من قبل Xipeng Qiu
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The objective of knowledge graph embedding is to encode both entities and relations of knowledge graphs into continuous low-dimensional vector spaces. Previously, most works focused on symbolic representation of knowledge graph with structure information, which can not handle new entities or entities with few facts well. In this paper, we propose a novel deep architecture to utilize both structural and textual information of entities. Specifically, we introduce three neural models to encode the valuable information from text description of entity, among which an attentive model can select related information as needed. Then, a gating mechanism is applied to integrate representations of structure and text into a unified architecture. Experiments show that our models outperform baseline by margin on link prediction and triplet classification tasks. Source codes of this paper will be available on Github.

قيم البحث

اقرأ أيضاً

92 - Weijie Liu , Peng Zhou , Zhe Zhao 2019
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machine s to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.
Recent advances in information extraction have motivated the automatic construction of huge Knowledge Graphs (KGs) by mining from large-scale text corpus. However, noisy facts are unavoidably introduced into KGs that could be caused by automatic extr action. To validate the correctness of facts (i.e., triplets) inside a KG, one possible approach is to map the triplets into vector representations by capturing the semantic meanings of facts. Although many representation learning approaches have been developed for knowledge graphs, these methods are not effective for validation. They usually assume that facts are correct, and thus may overfit noisy facts and fail to detect such facts. Towards effective KG validation, we propose to leverage an external human-curated KG as auxiliary information source to help detect the errors in a target KG. The external KG is built upon human-curated knowledge repositories and tends to have high precision. On the other hand, although the target KG built by information extraction from texts has low precision, it can cover new or domain-specific facts that are not in any human-curated repositories. To tackle this challenging task, we propose a cross-graph representation learning framework, i.e., CrossVal, which can leverage an external KG to validate the facts in the target KG efficiently. This is achieved by embedding triplets based on their semantic meanings, drawing cross-KG negative samples and estimating a confidence score for each triplet based on its degree of correctness. We evaluate the proposed framework on datasets across different domains. Experimental results show that the proposed framework achieves the best performance compared with the state-of-the-art methods on large-scale KGs.
171 - Weizhi Ma , Min Zhang , Yue Cao 2019
Explainability and effectiveness are two key aspects for building recommender systems. Prior efforts mostly focus on incorporating side information to achieve better recommendation performance. However, these methods have some weaknesses: (1) predict ion of neural network-based embedding methods are hard to explain and debug; (2) symbolic, graph-based approaches (e.g., meta path-based models) require manual efforts and domain knowledge to define patterns and rules, and ignore the item association types (e.g. substitutable and complementary). In this paper, we propose a novel joint learning framework to integrate textit{induction of explainable rules from knowledge graph} with textit{construction of a rule-guided neural recommendation model}. The framework encourages two modules to complement each other in generating effective and explainable recommendation: 1) inductive rules, mined from item-centric knowledge graphs, summarize common multi-hop relational patterns for inferring different item associations and provide human-readable explanation for model prediction; 2) recommendation module can be augmented by induced rules and thus have better generalization ability dealing with the cold-start issue. Extensive experimentsfootnote{Code and data can be found at: url{https://github.com/THUIR/RuleRec}} show that our proposed method has achieved significant improvements in item recommendation over baselines on real-world datasets. Our model demonstrates robust performance over noisy item knowledge graphs, generated by linking item names to related entities.
We present a method to represent input texts by contextualizing them jointly with dynamically retrieved textual encyclopedic background knowledge from multiple documents. We apply our method to reading comprehension tasks by encoding questions and pa ssages together with background sentences about the entities they mention. We show that integrating background knowledge from text is effective for tasks focusing on factual reasoning and allows direct reuse of powerful pretrained BERT-style encoders. Moreover, knowledge integration can be further improved with suitable pretraining via a self-supervised masked language model objective over words in background-augmented input text. On TriviaQA, our approach obtains improvements of 1.6 to 3.1 F1 over comparable RoBERTa models which do not integrate background knowledge dynamically. On MRQA, a large collection of diverse QA datasets, we see consistent gains in-domain along with large improvements out-of-domain on BioASQ (2.1 to 4.2 F1), TextbookQA (1.6 to 2.0 F1), and DuoRC (1.1 to 2.0 F1).
97 - Chen Liu , Su Zhu , Zijian Zhao 2020
Spoken Language Understanding (SLU) converts hypotheses from automatic speech recognizer (ASR) into structured semantic representations. ASR recognition errors can severely degenerate the performance of the subsequent SLU module. To address this issu e, word confusion networks (WCNs) have been used to encode the input for SLU, which contain richer information than 1-best or n-best hypotheses list. To further eliminate ambiguity, the last system act of dialogue context is also utilized as additional input. In this paper, a novel BERT based SLU model (WCN-BERT SLU) is proposed to encode WCNs and the dialogue context jointly. It can integrate both structural information and ASR posterior probabilities of WCNs in the BERT architecture. Experiments on DSTC2, a benchmark of SLU, show that the proposed method is effective and can outperform previous state-of-the-art models significantly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا