ﻻ يوجد ملخص باللغة العربية
We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3 sigma level, from a catalog of 110 unique point sources. We find 4 transients (flux variability ratio greater than 10) and a further 8 objects with ratio > 5. The observations span years 2003 - 2010 and reach a limiting luminosity of >10$^{35}$ erg/s, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light-curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magellanic Clouds (40-200 My) where most of the known HMXBs reside. We find 10 strong HMXB candidates, 2 probable background Active Galactic Nuclei, 4 foreground flare-stars or active binaries, and 5 not yet classifiable sources. Complete classification of the sample requires optical spectroscopy for radial velocity analysis and deeper X-ray observations to obtain higher S/N spectra and search for pulsations. A catalog and supporting dataset are provided.
In young starburst galaxies, the X-ray population is expected to be dominated by the relics of the most massive and short-lived stars, black-hole and neutron-star high mass X-ray binaries (XRBs). In the closest such galaxy, IC 10, we have made a mult
The massive black hole + Wolf-Rayet binary IC10 X-1 was observed in a series of 10 Chandra and 2 XMM-Newton observations spanning 2003-2012, showing consistent variability around 7 x10^37 erg/s, with a spectral hardening event in 2009. We phase-conne
Ultraluminous X-ray sources (ULXs) are a class of accreting compact objects with X-ray luminosities above 1e39 erg/s. The ULX population counts several hundreds objects but only a minor fraction is well studied. Here we present a detailed analysis of
We present results for two Ultraluminous X-ray Sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by $sim$7 days. We observe little spectral or flux variability above 1 keV between epochs, with
We present the results obtained from the analysis of three XMM-Newton observations of M83. The aims of the paper are studying the X-ray source populations in M83 and calculating the X-ray luminosity functions of X-ray binaries for different regions o