ﻻ يوجد ملخص باللغة العربية
In light of recent observational results indicating an apparent lack of correlation between the Anomalous Microwave Emission (AME) and mid-infrared emission from polycyclic aromatic hydrocarbons (PAHs), we assess whether rotational emission from spinning silicate and/or iron nanoparticles could account for the observed AME without violating observational constraints on interstellar abundances, ultraviolet extinction, and infrared emission. By modifying the SpDust code to compute the rotational emission from these grains, we find that nanosilicate grains could account for the entirety of the observed AME, whereas iron grains could be responsible for only a fraction, even for extreme assumptions on the amount of interstellar iron concentrated in ultrasmall iron nanoparticles. Given the added complexity of contributions from multiple grain populations to the total spinning dust emission, as well as existing uncertainties due to the poorly-constrained grain size, charge, and dipole moment distributions, we discuss generic, carrier-independent predictions of spinning dust theory and observational tests that could help identify the AME carrier(s).
We employ an all-sky map of the anomalous microwave emission (AME) produced by component separation of the microwave sky to study correlations between the AME and Galactic dust properties. We find that while the AME is highly correlated with all trac
Several interstellar environments produce anomalous microwave emission, with brightness-peaks at tens-of-gigahertz frequencies. The emissions origins are uncertain - rapidly-spinning nano-particles could emit electric-dipole radiation, but polycyclic
Anomalous microwave emission (AME) has been observed by numerous experiments in the frequency range ~10-60 GHz. Using Planck maps and multi-frequency ancillary data, we have constructed spectra for two known AME regions: the Perseus and Rho Ophiuchi
In this chapter, we will outline the scientific motivation for studying Anomalous Microwave Emission (AME) with the SKA. AME is thought to be due to electric dipole radiation from small spinning dust grains, although thermal fluctuations of magnetic
Using 1 cm and 3 mm CARMA and 2 mm GISMO observations, we follow up the first extragalactic detection of anomalous microwave emission (AME) reported by Murphy et al. 2010 in an extranuclear region (Enuc. 4) of the nearby face-on spiral galaxy NGC 694