ﻻ يوجد ملخص باللغة العربية
The effect of finger spreading on hydrodynamic drag in swimming is studied both with a numerical simulation and with laboratory experiments. Both approaches are based on the exact same 3D model of the hand with attached forearm. The virtual version of the hand with forearm was implemented in a numerical code by means of an immersed boundary method and the physical version was studied in a wind tunnel experiment. An enhancement of the drag coefficient of 2 and 5% compared to the case with closed fingers was found for the numerical simulation and experiment, respectively. A 5 and 8% favourable effect on the (dimensionless) force moment at an optimal finger spreading of 10 degrees was found, which indicates that the difference is more outspoken in the force moment. Also an analytical model is proposed, using scaling arguments similar to the Betz actuator disk model, to explain the drag coefficient as a function of finger spacing.
We experimentally investigate the influence of alternating rough and smooth walls on bubbly drag reduction (DR). We apply rough sandpaper bands of width $s$ between $48.4,mm$ and $148.5,mm$, and roughness height $k = 695,{mu}m$, around the smooth inn
We experimentally study the influence of wall roughness on bubble drag reduction in turbulent Taylor-Couette flow, i.e. the flow between two concentric, independently rotating cylinders. We measure the drag in the system for the cases with and withou
We study the fluid dynamics of two fish-like bodies with synchronised swimming patterns. Our studies are based on two-dimensional simulations of viscous incompressible flows. We distinguish between motion patterns that are externally imposed on the s
By synergistically combining modeling, simulation and experiments, we show that there exists a regime of self-propulsion in which the inertia in the fluid dynamics can be separated from that of the swimmer. This is demonstrated by the motion of an as
We present a numerical study of the rheology of a two-fluid emulsion in dilute and semidilute conditions. The analysis is performed for different capillary numbers, volume fraction and viscosity ratio under the assumption of negligible inertia and ze