ﻻ يوجد ملخص باللغة العربية
Motivated by the flavored Peccei-Quinn symmetry for unifying the flavor physics and string theory, we construct an explicit model by introducing a $U(1)$ symmetry such that the $U(1)_X$-$[gravity]^2$ anomaly-free condition together with the standard model flavor structure demands additional sterile neutrinos as well as no axionic domain-wall problem. Such additional sterile neutrinos play the role of a realization of baryogenesis via a new Affleck-Dine leptogenesis. We provide grounds for that the $U(1)_X$ symmetry could be interpreted as a fundamental symmetry of nature. The model will resolve rather recent, but fast-growing issues in astro-particle physics, including leptonic mixings and CP violation in neutrino oscillation, high-energy neutrinos, QCD axion, and axion cooling of stars. The QCD axion decay constant, through its connection to the astrophysical constraints of stellar evolution and the SM fermion masses, is shown to be fixed at $F_A=1.30^{+0.66}_{-0.54}times10^{9}$ GeV (consequently, its mass is $m_a=4.34^{+3.37}_{-1.49}$ meV and axion-photon coupling is $|g_{agammagamma}|=1.30^{+1.01}_{-0.45}times10^{-12},{rm GeV}^{-1}$). Interestingly enough, we show that neutrino oscillations at low energies could be connected to astronomical-scale baseline neutrino oscillations. The model predicts non-observational neutrinoless double beta ($0 ubetabeta$) decay rate as well as a remarkable pattern between leptonic Dirac CP phase ($delta_{CP}$) and atmospheric mixing angle ($theta_{23}$); {it e.g.} $delta_{CP}simeq220^{circ}-240^{circ}$, $120^{circ}-140^{circ}$ for $theta_{23}=42.3^{circ}$ for normal mass ordering, and $delta_{CP}simeq283^{circ},250^{circ},100^{circ},70^{circ}$ for $theta_{23}=49.5^{circ}$ for inverted one.
Adding a second scalar doublet (eta^+,eta^0) and three neutral singlet fermions N_{1,2,3} to the Standard Model of particle interactions with a new Z_2 symmetry, it has been shown that Re(eta^0) or Im(eta^0) is a good dark-matter candidate and seesaw
We study the scalar Higgs sector of the next-to-minimal supersymmetric standard model with an extra U(1), which has two Higgs doublets and a Higgs singlet, in the light leptophobic $Z$ scenario where the extra neutral gauge boson $Z$ does not couple
We propose a E_6 inspired supersymmetric model with a non-Abelian discrete flavor symmetry (S_4 group); that is, SU(3)_c x SU(2)_W x U(1)_Y x U(1)_X x S_4 x Z_2. In our scenario, the additional abelian gauge symmetry; U(1)_X, not only solves the mu-p
We study a three-loop induced neutrino model with a global $U(1)$ symmetry at TeV scale, in which we naturally accommodate a bosonic dark matter candidate. We discuss the allowed regions of masses and quartic couplings for charged scalar bosons as we
The neutralino sector in E_6 inspired supersymmetric models with extra neutral gauge bosons and singlet Higgs fields contains additional gaugino and singlino states compared to the MSSM. We discuss the neutralino mixing in rank 5 and rank 6 models an