ترغب بنشر مسار تعليمي؟ اضغط هنا

Weakly Supervised Cascaded Convolutional Networks

149   0   0.0 ( 0 )
 نشر من قبل Ali Diba
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Object detection is a challenging task in visual understanding domain, and even more so if the supervision is to be weak. Recently, few efforts to handle the task without expensive human annotations is established by promising deep neural network. A new architecture of cascaded networks is proposed to learn a convolutional neural network (CNN) under such conditions. We introduce two such architectures, with either two cascade stages or three which are trained in an end-to-end pipeline. The first stage of both architectures extracts best candidate of class specific region proposals by training a fully convolutional network. In the case of the three stage architecture, the middle stage provides object segmentation, using the output of the activation maps of first stage. The final stage of both architectures is a part of a convolutional neural network that performs multiple instance learning on proposals extracted in the previous stage(s). Our experiments on the PASCAL VOC 2007, 2010, 2012 and large scale object datasets, ILSVRC 2013, 2014 datasets show improvements in the areas of weakly-supervised object detection, classification and localization.



قيم البحث

اقرأ أيضاً

One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspo ndence information contained in anatomical labels. We argue that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural network approach aims to predict displacement fields to align multiple labelled corresponding structures for individual image pairs during the training, while only unlabelled image pairs are used as the network input for inference. We highlight the versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated without requiring any anatomical labels or initialisation. Several network architecture variants are compared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels.
Weakly supervised temporal action localization, which aims at temporally locating action instances in untrimmed videos using only video-level class labels during training, is an important yet challenging problem in video analysis. Many current method s adopt the localization by classification framework: first do video classification, then locate temporal area contributing to the results most. However, this framework fails to locate the entire action instances and gives little consideration to the local context. In this paper, we present a novel architecture called Cascaded Pyramid Mining Network (CPMN) to address these issues using two effective modules. First, to discover the entire temporal interval of specific action, we design a two-stage cascaded module with proposed Online Adversarial Erasing (OAE) mechanism, where new and complementary regions are mined through feeding the erased feature maps of discovered regions back to the system. Second, to exploit hierarchical contextual information in videos and reduce missing detections, we design a pyramid module which produces a scale-invariant attention map through combining the feature maps from different levels. Final, we aggregate the results of two modules to perform action localization via locating high score areas in temporal Class Activation Sequence (CAS). Extensive experiments conducted on THUMOS14 and ActivityNet-1.3 datasets demonstrate the effectiveness of our method.
234 - Chuchu Han , Kai Su , Dongdong Yu 2021
Supervised learning is dominant in person search, but it requires elaborate labeling of bounding boxes and identities. Large-scale labeled training data is often difficult to collect, especially for person identities. A natural question is whether a good person search model can be trained without the need of identity supervision. In this paper, we present a weakly supervised setting where only bounding box annotations are available. Based on this new setting, we provide an effective baseline model termed Region Siamese Networks (R-SiamNets). Towards learning useful representations for recognition in the absence of identity labels, we supervise the R-SiamNet with instance-level consistency loss and cluster-level contrastive loss. For instance-level consistency learning, the R-SiamNet is constrained to extract consistent features from each person region with or without out-of-region context. For cluster-level contrastive learning, we enforce the aggregation of closest instances and the separation of dissimilar ones in feature space. Extensive experiments validate the utility of our weakly supervised method. Our model achieves the rank-1 of 87.1% and mAP of 86.0% on CUHK-SYSU benchmark, which surpasses several fully supervised methods, such as OIM and MGTS, by a clear margin. More promising performance can be reached by incorporating extra training data. We hope this work could encourage the future research in this field.
Response evaluation criteria in solid tumors (RECIST) is the standard measurement for tumor extent to evaluate treatment responses in cancer patients. As such, RECIST annotations must be accurate. However, RECIST annotations manually labeled by radio logists require professional knowledge and are time-consuming, subjective, and prone to inconsistency among different observers. To alleviate these problems, we propose a cascaded convolutional neural network based method to semi-automatically label RECIST annotations and drastically reduce annotation time. The proposed method consists of two stages: lesion region normalization and RECIST estimation. We employ the spatial transformer network (STN) for lesion region normalization, where a localization network is designed to predict the lesion region and the transformation parameters with a multi-task learning strategy. For RECIST estimation, we adapt the stacked hourglass network (SHN), introducing a relationship constraint loss to improve the estimation precision. STN and SHN can both be learned in an end-to-end fashion. We train our system on the DeepLesion dataset, obtaining a consensus model trained on RECIST annotations performed by multiple radiologists over a multi-year period. Importantly, when judged against the inter-reader variability of two additional radiologist raters, our system performs more stably and with less variability, suggesting that RECIST annotations can be reliably obtained with reduced labor and time.
Recently, deep neural networks have achieved remarkable performance on the task of object detection and recognition. The reason for this success is mainly grounded in the availability of large scale, fully annotated datasets, but the creation of such a dataset is a complicated and costly task. In this paper, we propose a novel method for weakly supervised object detection that simplifies the process of gathering data for training an object detector. We train an ensemble of two models that work together in a student-teacher fashion. Our student (localizer) is a model that learns to localize an object, the teacher (assessor) assesses the quality of the localization and provides feedback to the student. The student uses this feedback to learn how to localize objects and is thus entirely supervised by the teacher, as we are using no labels for training the localizer. In our experiments, we show that our model is very robust to noise and reaches competitive performance compared to a state-of-the-art fully supervised approach. We also show the simplicity of creating a new dataset, based on a few videos (e.g. downloaded from YouTube) and artificially generated data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا