ترغب بنشر مسار تعليمي؟ اضغط هنا

Phototaxis beyond turning: persistent accumulation and response acclimation of the microalga Chlamydomonas reinhardtii

51   0   0.0 ( 0 )
 نشر من قبل Marco Polin
 تاريخ النشر 2016
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phototaxis is an important reaction to light displayed by a wide range of motile microorganisms. Flagellated eukaryotic microalgae in particular, like the model organism Chlamydomonas reinhardtii, steer either towards or away from light by a rapid and precisely timed modulation of their flagellar activity. Cell steering, however, is only the beginning of a much longer process which ultimately allows cells to determine their light exposure history. This process is not well understood. Here we present a first quantitative study of the long timescale phototactic motility of Chlamydomonas at both single cell and population levels. Our results reveal that the phototactic strategy adopted by these microorganisms leads to an efficient exposure to light, and that the phototactic response is modulated over typical timescales of tens of seconds. The adaptation dynamics for phototaxis and chlorophyll fluorescence show a striking quantitative agreement, suggesting that photosynthesis controls quantitatively how cells navigate a light field.



قيم البحث

اقرأ أيضاً

The unicellular biflagellate green alga {it Chlamydomonas reinhardtii} has been an important model system in biology for decades, and in recent years it has started to attract growing attention also within the biophysics community. Here we provide a concise review of some of the aspects of {it Chlamydomonas} biology and biophysics most immediately relevant to physicists that might be interested in starting to work with this versatile microorganism.
We study the dynamics of a thick polar epithelium subjected to the action of both an electric and a flow field in a planar geometry. We develop a generalized continuum hydrodynamic description and describe the tissue as a two component fluid system. The cells and the interstitial fluid are the two components and we keep all terms allowed by symmetry. In particular we keep track of the cell pumping activity for both solvent flow and electric current and discuss the corresponding orders of magnitude. We study the growth dynamics of tissue slabs, their steady states and obtain the dependence of the cell velocity, net cell division rate, and cell stress on the flow strength and the applied electric field. We find that finite thickness tissue slabs exist only in a restricted region of phase space and that relatively modest electric fields or imposed external flows can induce either proliferation or death.
Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that en able force transmission over distances larger than the size of the cells. Contractile force-mediated remodeling of ECM fibers has bearing on a number of physiologic and pathophysiologic phenomena. In this work, we present a computational model to capture cell-mediated remodeling within fibrous matrices using finite element based discrete fiber network simulations. The model is shown to accurately capture collagen alignment, heterogeneous deformations, and long-range force transmission observed experimentally. The zone of mechanical influence surrounding a single contractile cell and the interaction between two cells are predicted from the strain-induced alignment of fibers. Through parametric studies, the effect of cell contractility and cell shape anisotropy on matrix remodeling and force transmission are quantified and summarized in a phase diagram. For highly contractile and elongated cells, we find a sensing distance that is ten times the cell size, in agreement with experimental observations.
Cells and organisms follow aligned structures in their environment, a process that can generate persistent migration paths. Kinetic transport equations are a popular modelling tool for describing biological movements at the mesoscopic level, yet thei r formulations usually assume a constant turning rate. Here we relax this simplification, extending to include a turning rate that varies according to the anisotropy of a heterogeneous environment. We extend known methods of parabolic and hyperbolic scaling and apply the results to cell movement on micro-patterned domains. We show that inclusion of orientation dependence in the turning rate can lead to persistence of motion in an otherwise fully symmetric environment, and generate enhanced diffusion in structured domains.
We report the first realization of a biomolecular AND gate function with double-sigmoid response (sigmoid in both inputs). Two enzyme biomarker inputs activate the gate output signal which can then be used as indicating liver injury, but only when bo th of these inputs have elevated pathophysiological concentrations, effectively corresponding to logic-1 of the binary gate functioning. At lower, normal physiological concentrations, defined as logic-0 inputs, the liver-injury output levels are not obtained. High-quality gate functioning in handling of various sources of noise, on time scales of relevance to potential applications is enabled by utilizing filtering effected by a simple added biocatalytic process. The resulting gate response is sigmoid in both inputs when proper system parameters are chosen, and the gate properties are theoretically analyzed within a model devised to evaluate its noise-handling properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا