ﻻ يوجد ملخص باللغة العربية
A study on cosmic muons has been performed for the two identical near and far neutrino detectors of the Double Chooz experiment, placed at $sim$120 and $sim$300 m.w.e. underground respectively, including the corresponding simulations using the MUSIC simulation package. This characterization has allowed to measure the muon flux reaching both detectors to be (3.64 $pm$ 0.04) $times$ 10$^{-4}$ cm$^{-2}$s$^{-1}$ for the near detector and (7.00 $pm$ 0.05) $times$ 10$^{-5}$ cm$^{-2}$s$^{-1}$ for the far one. The seasonal modulation of the signal has also been studied observing a positive correlation with the atmospheric temperature, leading to an effective temperature coefficient of $alpha_{T}$ = 0.212 $pm$ 0.024 and 0.355 $pm$ 0.019 for the near and far detectors respectively. These measurements, in good agreement with expectations based on theoretical models, represent one of the first measurements of this coefficient in shallow depth installations.
A $theta_{13}$ oscillation analysis based on the observed antineutrino rates at the Double Chooz far and near detectors for different reactor power conditions is presented. This approach provides a so far unique simultaneous determination of $theta_{
The yields and production rates of the radioisotopes $^9$Li and $^8$He created by cosmic muon spallation on $^{12}$C, have been measured by the two detectors of the Double Chooz experiment. The identical detectors are located at separate sites and de
The establishment of the neutrino oscillations phenomenon as a solution to both solar and atmospheric neutrino anomalies had two consequences: a new oscillation mode, labelled $mathbf{theta_{13}}$, and the possibility to observe CP violation, if $mat
We present a search for signatures of neutrino mixing of electron anti-neutrinos with additional hypothetical sterile neutrino flavors using the Double Chooz experiment. The search is based on data from 5 years of operation of Double Chooz, including
The charge ratio ${k equiv mu^+/mu^-}$ for atmospheric muons has been measured using Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory, Italy (minimal depth is 3000 m w.e.). To reach this depth muons should have the energy at the