ﻻ يوجد ملخص باللغة العربية
In this paper we consider Simultaneous Feedback Edge Set (Sim-FES) problem. In this problem, the input is an $n$-vertex graph $G$, an integer $k$ and a coloring function ${sf col}: E(G) rightarrow 2^{[alpha]}$ and the objective is to check whether there is an edge subset $S$ of cardinality at most $k$ in $G$ such that for all $i in [alpha]$, $G_i - S$ is acyclic. Here, $G_i=(V(G), {ein E(G) mid i in {sf col}(e)})$ and $[alpha]={1,ldots,alpha}$. When $alpha =1$, the problem is polynomial time solvable. We show that for $alpha =3$ Sim-FES is NP-hard by giving a reduction from Vertex Cover on cubic graphs. The same reduction shows that the problem does not admit an algorithm of running time $O(2^{o(k)}n^{O(1)})$ unless ETH fails. This hardness result is complimented by an FPT algorithm for Sim-FES running in time $O(2^{omega kalpha+alpha log k} n^{O(1)})$, where $omega$ is the exponent in the running time of matrix multiplication. The same algorithm gives a polynomial time algorithm for the case when $alpha =2$. We also give a kernel for Sim-FES with $(kalpha)^{O(alpha)}$ vertices. Finally, we consider the problem Maximum Simultaneous Acyclic Subgraph. Here, the input is a graph $G$, an integer $q$ and, a coloring function ${sf col}: E(G) rightarrow 2^{[alpha]}$. The question is whether there is a edge subset $F$ of cardinality at least $q$ in $G$ such that for all $iin [alpha]$, $G[F_i]$ is acyclic. Here, $F_i={e in F mid i in textsf{col}(e)}$. We give an FPT algorithm for running in time $O(2^{omega q alpha}n^{O(1)})$.
In the Directed Feedback Vertex Set (DFVS) problem, the input is a directed graph $D$ on $n$ vertices and $m$ edges, and an integer $k$. The objective is to determine whether there exists a set of at most $k$ vertices intersecting every directed cycl
}We study (vertex-disjoint) $P_2$-packings in graphs under a parameterized perspective. Starting from a maximal $P_2$-packing $p$ of size $j$ we use extremal arguments for determining how many vertices of $p$ appear in some $P_2$-packing of size $(j+
The Cut & Count technique and the rank-based approach have lead to single-exponential FPT algorithms parameterized by treewidth, that is, running in time $2^{O(tw)}n^{O(1)}$, for Feedback Vertex Set and connect
It has long been known that Feedback Vertex Set can be solved in time $2^{mathcal{O}(wlog w)}n^{mathcal{O}(1)}$ on $n$-vertex graphs of treewidth $w$, but it was only recently that this running time was improved to $2^{mathcal{O}(w)}n^{mathcal{O}(1)}
We study the recently introduced Connected Feedback Vertex Set (CFVS) problem from the view-point of parameterized algorithms. CFVS is the connected variant of the classical Feedback Vertex Set problem and is defined as follows: given a graph G=(V,E)