ﻻ يوجد ملخص باللغة العربية
A single transport relaxation rate governs the decay of both, longitudinal and Hall currents in Landau Fermi Liquids (LFL). Breakdown of this fundamental feature, first observed in cuprates and subsequently in other three-dimensional correlated systems close to (partial or complete) Mott metal-insulator transitions, played a pivotal role in emergence of a non-Landau Fermi liquid paradigm in higher dimensions $D(>1)$. Motivated hereby, we explore the emergence of this two relaxation rates scenario in the Hubbard-Falicov-Kimball model (HFKM) using the dynamical mean-field theory (DMFT). Specializing to $D=3$, we find, beyond a critical FK interaction, that two distinct relaxation rates governing distinct temperature ($T$) dependence of the longitudinal and Hall currents naturally emerges in the non-LFL metal. We rationalize this surprising finding by an analytical analysis of the structure of charge and spin correlations in the underlying impurity problem, and point out good accord with observations in the famed case of V$_{2-y}$O$_3$ near the MIT.
The observation of charge stripe order in the doped nickelate and cuprate materials has motivated much theoretical effort to understand the underlying mechanism of the stripe phase. Numerical studies of the Hubbard model show two possibilities: (i) s
Thermodynamic properties of the spinless Falicov-Kimball model are studied on a triangular lattice using numerical diagonalization technique with Monte-Carlo simulation algorithm. Discontinuous metal-insulator transition is observed at finite tempera
In this paper we extend the Falicov-Kimball model (FKM) to the case where the quasi-particles entering the FKM are not ordinary fermions. As an example we first discuss how the FKM can be generalized to the case with spin-dependent hopping. Afterward
Using exact numerical techniques we investigate the nature of excitonic (electron-hole) bound states and the development of exciton coherence in the one-dimensional half-filled extended Falicov-Kimball model. The ground-state phase diagram of the mod
We derive an analytical expression for the local two-particle vertex of the Falicov-Kimball model, including its dependence on all three frequencies, the full vertex and all reducible vertices. This allows us to calculate the self energy in diagramma