ﻻ يوجد ملخص باللغة العربية
We reconsider the possibility that the tension in the $|V_{cb}|$ determinations from inclusive and exclusive $B$ decay modes is due to a new physics effect. We modify the Standard Model effective Hamiltonian for semileptonic $b to c$ transitions including a tensor operator with a lepton flavour dependent coupling $epsilon_T^ell$, and investigate separately the muon and electron modes. The interference term between SM and NP, proportional to the lepton mass, has different impact in the inclusive and exclusive $B$ modes to muon. Moreover, even when the lepton mass is small as for the electron, the NP effect is different in inclusive and exclusive $B$ channels. For both $mu$ and $e$ we find a region of $epsilon_T^{mu,,e}$ where the constraints from $B^- to D^{(*)0} ell^- {bar u}_ell$ and $B to X_c , ell , bar u_ell$ are satisfied for the same $|V_{cb}|$.
We perform the simultaneous $|V_{ub}|$ and $|V_{cb}|$ extractions with only the exclusive $Lambda_b$ decays of $Lambda_bto (p,Lambda_c^+)mubar u_mu$, $Lambda_bto ppi^-$ and $Lambda_bto Lambda_c^+ (pi^-, D^-)$. We obtain that $|V_{ub}|=(3.7pm 0.3)tim
We point out that the recently increased value of the angle $gamma$ in the Unitarity Triangle (UT), determined in tree-level decays to be $gamma=(74.0^{+5.0}_{-5.8})^circ$ by the LHCb collaboration, combined with the most recent value of $|V_{cb}|$ i
We discuss the impact of the recent $mathcal{O}(alpha_s^3)$ calculations of the semileptonic width of the $b$ quark and of the relation between pole and kinetic heavy quark masses by Fael et al. on the inclusive determination of $|V_{cb}|$. The most
We discuss the impact of the recent untagged analysis of ${B}^0rightarrow D^{*}lbar{ u}_l$ decays by the Belle Collaboration on the extraction of the CKM element $|V_{cb}|$ and provide updated SM predictions for the $bto ctau u$ observables $R(D^*)$,
We investigate the semi-leptonic decays of $bar B to D^{(*)} ellbar u$ in terms of the Heavy-Quark-Effective-Theory (HQET) parameterization for the form factors, which is described with the heavy quark expansion up to $mathcal O(1/m_c^2)$ beyond the