ﻻ يوجد ملخص باللغة العربية
A pair of atoms interacts with non-resonant light via its anisotropic polarizability. This effect can be used to tune the scattering properties of the atoms. Although the light-atom interaction varies with interatomic separation as $1/R^{3}$, the effective s-wave potential decreases more rapidly, as $1/R^{4}$ such that the field-dressed scattering length can be determined without any formal difficulty. The scattering dynamics are essentially governed by the long-range part of the interatomic interaction and can thus be accurately described by an asymptotic model [Crubellier et al., New J. Phys. 17, 045020 (2015)]. Here we use the asymptotic model to determine the field-dressed scattering length from the s-wave radial component of a particular threshold wave function. Applying our theory to the scattering of two strontium isotopes, we calculate the variation of the scattering length with the intensity of the non-resonant light. Moreover, we predict the intensities at which the scattering length becomes infinite for any pair of atoms.
We report the calculation of the interspecies scattering length for the sodium-rubidium (Na-Rb) system. We present improved hybrid potentials for the singlet $X^1Sigma^+$ and triplet $a^3Sigma^+$ ground states of the NaRb molecule, and calculate the
We have measured the deca-triplet s-wave scattering length of the bosonic chromium isotopes $^{52}$Cr and $^{50}$Cr. From the time constants for cross-dimensional thermalization in atomic samples we have determined the magnitudes $|a(^{52}Cr)|=(170 p
We report the observation of a novel nonlinear effect in the hard x-ray range. Upon illuminating Fe and Cu metal foils with intense x-ray pulses tuned near their respective K edges, photons at nearly twice the incoming photon energy are emitted. The
The S-wave model of electron-hydrogen scattering is evaluated using the convergent close-coupling method with an emphasis on scattering from excited states including an initial state from the target continuum. Convergence is found for discrete excita
Weakly bound molecules have physical properties without atomic analogues, even as the bond length approaches dissociation. In particular, the internal symmetries of homonuclear diatomic molecules result in formation of two-body superradiant and subra